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Preface 
 

The seventh Los Alamos Space Weather Summer School was held June 4th – July 
27th, 2018 at Los Alamos National Laboratory (LANL).  With renewed support from the 
Center for Space and Earth Sciences (CSES), we hosted a new class of seven students 
from various U.S. and foreign research institutions. The summer school curriculum 
includes a series of structured lectures as well as mentored research. Lecture topics 
including general and specialized topics in the field of space weather were given by a 
number of researchers affiliated with LANL.   

Students were given the opportunity to engage in research projects through a 
mentored practicum experience. Each student works with one or more LANL-affiliated 
mentors to execute a collaborative research project, typically linked with a larger on-
going research effort at LANL and/or the student’s PhD thesis research. This model 
provides a valuable learning experience for the student while developing the opportunity 
for future collaboration. 

This report includes a summary of the research efforts fostered and facilitated by the 
Space Weather Summer School. These reports should be viewed as work-in-progress as 
the short session typically only offers sufficient time for preliminary results. At the close 
of the summer school session, students present a summary of their research efforts.  

It has been an honor for me to serve as the director of the Los Alamos Space Weather 
Summer School, and I am indebted to director emerita Misa Cowee for her assistance in 
so many things. I am grateful for all the administrative and logistical help I have 
received in organizing the program. Most of all, I am proud of the work done by the 
students, mentors and lecturers—their dedicated effort and unfailing professionalism 
were key to allowing our program to be successful.   
 
Los Alamos, NM     
December 2018     

Dr. Jesse Woodroffe 
Summer School Director 
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The Effect of Helium on Low Earth Orbit Atmospheric Drag

Valerie Bernstein

University of Colorado Boulder, Boulder, CO 80309

Andrew Walker

Los Alamos National Laboratory, Los Alamos, NM 87545

Lisa Winter

Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract

Atmospheric drag describes the perturbing force of the atmosphere on the orbital trajectories of Low Earth Orbit
(LEO) objects and depends primarily on the spacecraft drag coefficient and the atmospheric mass density of the space
environment. In a quiet, contracted thermosphere, mass transport processes governed by vertical diffusion and large
scale meridional flow allow helium to concentrate around winter hemisphere polar latitudes at ∼500 km altitude. At-
mospheric drag is a significant source of uncertainty in orbital trajectories at these altitudes, and the effect of helium
on atmospheric drag has not yet been quantified. The Thermosphere-Ionosphere-Electrodynamics General Circula-
tion Model (TIEGCM) is a physics-based model of the Earth’s upper atmosphere maintained by the National Center
for Atmospheric Research (NCAR) that offers the ability to study the effects of including or neglecting atmospheric
helium on atmospheric mass density and spacecraft drag coefficient estimates. To examine the spatial and tempo-
ral effects of helium on satellite drag, we simulate TIEGCM atmospheres with and without helium along the orbital
trajectories of two LEO satellites, the Challenging Minisatellite Payload (CHAMP) at ∼375 km altitude and the Grav-
ity Recovery and Climate Experiment (GRACE) at ∼500 km altitude. Physics-based atmospheric simulations were
performed with TIEGCM for six one-week time periods. The breakdown of simulation time periods includes three
active, moderate, and quiet geomagnetic activity time periods selected for both this past solar maximum and solar min-
imum. We compare TIEGCM atmospheric mass densities with and without helium included as a major species with
accelerometer-derived density estimates for CHAMP and GRACE revised based on newly-computed drag coefficients
modeled for TIEGCM atmospheres with and without helium during these time periods to identify the strengths and
weaknesses of TIEGCM estimates attributed to helium. Including helium in TIEGCM is found to improve TIEGCM
density predictions and significantly increase the drag coefficient for GRACE during quiet solar minimum conditions
at polar latitudes in the winter hemisphere. We additionally compare TIEGCM atmospheres with and without helium
to atmospheres simulated by the Naval Research Laboratory’s Mass Spectrometer and Incoherent Scatter Extended
Model (NRLMSISE-00), an empirical model of the atmosphere that includes helium, in order to assess trends in the
variations in helium predicted from different atmospheric models. TIEGCM with helium consistently overestimates
the densities and underestimates the drag coefficients compared to those associated with MSIS atmospheres during
solar minimum, and this could be attributed to the fact that hydrogen, which is included in MSIS but neglected in
TIEGCM, had a significant role in the atmospheric dynamics at GRACE altitudes during this past solar minimum.

Keywords: satellite drag, atmospheric density, drag coefficient, TIEGCM, CHAMP, GRACE

Email addresses: valerie.bernstein@colorado.edu (Valerie Bernstein), awalker@lanl.gov (Andrew Walker), lmwinter@lanl.gov
(Lisa Winter)
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1. Introduction

Atmospheric drag describes the perturbing force of the atmosphere on the orbital trajectory of a satellite at altitudes
between 200 and 1000 km, which is a region in the Low Earth Orbit (LEO) space environment. Atmospheric drag
produces the largest source of uncertainty in precise orbit determination for LEO objects (Marcos et al., 2006). The
force exerted by atmospheric drag on an orbiting object is proportional to a quantity known as the drag coefficient
(CD), the area-to-mass ratio of the object, the density of the space environment through which the object is moving,
and the velocity of the object relative to the atmosphere.

~adrag = −
1
2

CD
A
m
ρv2

rel
~vrel

|~vrel|
(1)

Both the drag coefficient and the atmospheric mass density are highly variable and are governed by atmospheric
dynamics. The drag coefficient depends on the temperature of the surface of a satellite, the atmospheric temperature,
the concentrations of atmospheric constituent species, and the way that particles are reflected from the satellite surface.
Atmospheric density depends on a range of phenomena and conditions, such as solar geomagnetic activity levels,
thermospheric winds and flow patterns, and gas interaction processes. Accurate modeling of the drag coefficent and
the mass density is thus critical for precise positioning for Earth-orbiting satellites.

One recent area of research that has been of interest to the atmospheric density modeling community is the role
of helium in density variations (Thayer et al., 2012; Liu et al., 2014a,b). The Winter Helium Bulge (Keating and
Prior, 1967; Cageao and Kerr, 1984) refers to the abundance of helium at polar latitudes in the winter hemisphere
during solar minimum conditions at ∼500 km altitude. An example of this phenomenon is shown in Figure 1. Figure
1 displays maps of the helium concentration represented as a fraction of the atmospheric composition at an instant
of time in December of 2008, right in the middle of a very quiet solar minimum. In Figure 1a, a significant amount
of helium is revealed at northern polar latitudes around 500 km. The approximate orbital altitudes of two LEO
satellites, GRACE and CHAMP, are included on this plot to show the estimated amount of helium that they may have
encountered along their orbits during this time period. Figure 1b shows helium across all latitudes and longitudes
at an altitude of ∼500 km. Again, helium accumulates at polar latitudes in the northern hemisphere. This helium
behavior can be explained by the vertical transport of lighter species upward and heavier species downward, known
as vertical diffusion. Downward winds in the winter hemisphere enhance the helium concentration at these altitudes,
while upward winds in the summer hemisphere depress the helium concentration at these altitudes because helium
is pushed upward. The direction of these vertical winds is governed by the mass continuity equation. Additionally,
high pressure in the summer hemisphere from high temperatures drives the horizontal transport of species toward the
lower pressure winter hemisphere through large scale meridional flow, which explains the winter polar signature of
the helium abundance. Helium makes more of a presence during solar minimum than during solar maximum because
during solar maximum the atmosphere has more energy which leads to enhanced exospheric escape and high altitude
winds that decrease polar helium concentrations. During solar minimum the atmosphere is contracted which allows
more helium to accumulate at lower altitudes around the winter poles.

Most physics-based models of the atmosphere do not include helium (Liu, 2013). This is because the LEO
environment is typically considered to be dominated by either molecular nitrogen (at lower altitudes) or atomic oxygen
(at higher altitudes where satellite drag is a concern). However, an atmosphere dominated by helium instead of oxygen
would increase the drag coefficient and decrease the mass density experienced by an orbiting satellite (Liu, 2013)
because helium is much lighter than oxygen.

2. Methodology

We are interested in understanding where and when helium has the most significant impact on satellite drag. We
approach this question by examining atmospheric simulations from the Thermosphere-Ionosphere-Electrodynamics
General Circulation Model (TIEGCM) (Richmond et al., 1992) generated both with helium included as a major
constituent and without helium included as a major constituent. In order to assess the accuracy of the TIEGCM
simulations with and without helium, we compare the model results with observations from the CHAMP and GRACE
satellites. Thus employing CHAMP and GRACE accelerometer-inferred atmospheric density data allows us to assess
whether or not including helium as a major constituent makes TIEGCM better at predicting the measured state of
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(a) (b)

Figure 1: (a) Helium fractional concentration modeled by TIEGCM as a function of altitude and latitude for a given longitude and instant of
time. CHAMP and GRACE approximate orbital altitudes are shown to reveal the helium they encountered at this time and position. (b) Helium
concentration as a function of latitude and longitude at ∼500 km (GRACE’s orbital altitude) for an instant of time.

the atmosphere. Additionally, we want to determine how TIEGCM atmospheres with and without helium compare
to atmospheres simulated by the Naval Research Laboratory’s Mass Spectrometer and Incoherent Scatter Extended
(NRLMSISE-00, or MSIS) model (Picone et al., 2002). MSIS is an empirical model of Earth’s atmosphere that uses
mass spectrometer and incoherent scatter radar data, and the reason we employ it for comparison in this study is
because it includes helium concentration in its outputs.

2.1. Observations

CHAMP and GRACE were two LEO satellites equipped with accelerometers that have been used to probe atmo-
spheric density. CHAMP was the Challenging Minisatellite Payload launched to investigate the gravity, magnetic,
and electric fields around Earth from July of 2000 to September of 2010. CHAMP initially resided between 350 and
400 km. GRACE was the Gravity Recovery and Climate Experiment launched to accurately map Earth’s gravity field
variations around ∼500 km altitude. The GRACE mission began in March of 2002 and ended in October of 2017 and
incorporated two identical spacecraft, GRACE-A and GRACE-B, which flew ∼220 km apart, but we only examined
GRACE-A data for this project. Both CHAMP and GRACE had high inclination angles of > 87 degrees and nearly
polar orbits, as shown in Figure 2. Thus, data from these satellites covers the full range of latitude and longitude
values of interest to us.

2.2. TIEGCM Framework

TIEGCM offers us the ability to study the effects of including or neglecting helium in the atmosphere on mass
density and drag coefficient estimates. TIEGCM is a physics-based model maintained by the National Center for At-
mospheric Research (NCAR) that provides 3D numerical simulations of Earth’s upper atmosphere. It covers altitudes
between ∼100 and ∼600 km and calculates compositional features and dynamics of the atmosphere. The latitude-
longitude grid can be simulated with a resolution of either 2.5 degrees or 5 degrees. For each time step, the model
solves the 3D momentum, energy, and continuity equations for neutral and ion species. The model assumes hydro-
static equilibrium and constant gravity force. The model input parameters are the F10.7 daily and 81-day averages to
indicate the strength of UV and EUV radiation, Kp indices as indicative of auroral particle precipitation, electric field
conditions from the magnetosphere, and lower boundary conditions. The model outputs the relative compositions
of major and minor atmospheric constituent species, densities and temperatures of constituents, and neutral winds.
TIEGCM can be executed with or without helium included as a major constituent (Sutton et al., 2015), which allows
for comparison.
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(a) (b)

Figure 2: (a) Projection of 6 hours of CHAMP’s orbit in December of 2008, on the 351st day of the year. (b) Projection of GRACE’s orbit for the
same time period.

2.3. Simulation Time Periods

We investigated the effect of helium on drag coefficients and mass densities for a variety of solar conditions. For
both the previous solar maximum and solar minimum, we chose active, moderate, and quiet time periods based on
archived DST indices1. The time periods are included in Table 1.

Table 1: Simulation Time Periods

Solar Maximum Solar Minimum
Active 2003/10/26 - 2003/11/02 2006/12/10 - 2006/12/17

Moderate 2003/06/13 - 2003/06/20 2009/07/17 - 2009/07/24
Quiet 2003/01/14 - 2003/01/21 2008/12/14 - 2008/12/21

For each of these six time periods, we simulated TIEGCM atmospheres for one week with and without helium with
2.5 degree latitudinal/longitudinal resolution using NCAR’s supercomputer Cheyenne. We extracted CHAMP and
GRACE orbital position information and prior accelerometer-inferred densities for the same time periods to allow for
comparison. Additionally, we simulated MSIS atmospheres for mass density and constituent species’ number densities
comparisons. MSIS atmospheres for these time periods were generated based on Ap data and F10.7 averages2.

2.4. Obtaining Observed and Modeled Satellite Drag Parameters

Accelerometer data from both CHAMP and GRACE are used to obtain thermospheric density, and this has re-
cently been done to a high level of accuracy by Sutton et al. (2007). This method involves setting the acceleration
measurement equal to Eq. (1) and plugging in estimates for the drag coefficient and cross-sectional area of the satellite
while neglecting atmospheric winds in the representation of relative velocity. Error is introduced in the mass density
estimates when the drag coefficient is not accurately modeled, so Mehta et al. (2017) revised the Sutton et al. (2007)
density estimates using more reliable drag coefficients computed with a response surface model that takes species con-
centrations as inputs. Physical drag coefficients can be modeled using the Test Particle Monte Carlo method which
involves simulating shooting one particle into a volume, tracking the particle until it hits the satellite’s surface, and
calculating the force that the particle exerts on the satellite. Simulating these interactions for millions of particles
gets computationally expensive quickly. Thus a response surface model was used as an alternative to cut down on
computational effort, and it essentially operates as an interpolation scheme between 7 dimensions that can be trained

1Available from the World Data Center for Geomagnetism, Kyoto at http://wdc.kugi.kyoto-u.ac.jp/dstdir/index.html
2Available from CelesTrak Space Weather Data at http://celestrak.com/SpaceData/SW-All.txt
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by Test Particle Monte Carlo. Once a new, more robust drag coefficient has been estimated, taking the ratio of the old
drag coefficient estimate to the new drag coefficient estimate and multiplying by the original density estimate allows
for the determination of a newly calibrated density value.

ρnew =
CDold

CDnew

ρold (2)

We employed this method to obtain revised drag coefficients and CHAMP and GRACE accelerometer-inferred
mass densities with and without helium included in the response surface model. The fractional atmospheric constituent
species inputs to the response surface model were obtained from TIEGCM atmospheres simulated with and without
helium in order to arrive at revised drag coefficients. The old drag coefficient estimates were previously computed
by Mehta et al. (2017) using MSIS species fractions as inputs to the response surface model, thus it is important
to understand how TIEGCM and MSIS atmospheric species predictions compare in order to analyze the differences
between the old and new drag coefficients.

TIEGCM atmospheric mass density and constituent species concentrations were parsed from TIEGCM model out-
put along the observed orbital trajectories of CHAMP and GRACE for each of the six time periods with a one minute
time resolution. Grid interpolations in altitude, latitude and longitude space were performed for the TIEGCM output
variables of interest at each time step to obtain precise TIEGCM atmospheric estimates at locations along the orbits of
CHAMP and GRACE. For the 2003 and 2006 time periods, TIEGCM provided model coverage for all CHAMP and
GRACE orbital altitudes. However, for the 2008 and 2009 time periods, the atmosphere was contracted enough due
to extremely quiet solar minimum conditions that the TIEGCM upper pressure level boundary dropped to altitudes
below GRACE’s altitudes along portions of GRACE’s orbit. In these cases, extrapolations from TIEGCM altitudes
to GRACE altitudes were performed to get TIEGCM atmospheric estimates along GRACE’s orbit. TIEGCM mass
density estimates along GRACE’s orbit were obtained via exponential extrapolation from TIEGCM mass densities at
the two uppermost altitudes covered by TIEGCM for the latitude and longitude of GRACE under the assumption of an
isothermal atmosphere. TIEGCM He, N, N2, O and O2 estimated concentrations along GRACE’s orbit were obtained
through linear interpolation from TIEGCM number densities at the two uppermost altitudes covered by TIEGCM for
the latitude and longitude coordinates of GRACE. The results presented in Section 3 for quiet and contracted solar
minimum conditions thus include these exponentially extrapolated TIEGCM mass densities and linearly extrapolated
atmospheric species’ concentrations in their analyses along the portions of GRACE’s orbit not covered by TIEGCM
model output.

3. Results

3.1. CHAMP Altitudes

TIEGCM simulated atmospheres along CHAMP’s orbit matched the profiles of the densities observed by CHAMP.
This agreement was consistent for TIEGCM atmospheres modeled with helium and TIEGCM atmospheres modeled
without helium as well as across all geomagnetic conditions. Representative examples of this behavior for CHAMP
altitudes are shown in Figures 3 and 4. Both figures show the effect of including helium in TIEGCM on TIEGCM’s
ability to predict the atmospheric conditions seen by CHAMP. Figure 3 shows TIEGCM performance, both with
and without helium, compared to CHAMP’s measurements for a two-hour time period in the highly geomagnetically
active solar maximum conditions of October of 2003. Figure 3a shows CHAMP-derived densities with and without
helium as well as TIEGCM modeled densities with and without heium. Including or neglecting helium appears to
have a negligible effect on density at this altitude region and this level of geomagnetic activity. Figure 3b shows the
new drag coefficients modeled based on TIEGCM atmospheres with and without helium compared with the previous
drag coefficient estimates based on an MSIS atmosphere. The drag coefficients computed with and without helium
have essentially identical temporal profiles with a mean percent difference of 0.18% averaged over the full week of
simulations for October of 2003. Figure 3c shows the mole fractions of the different atmospheric constituent species
modeled by TIEGCM, both with and without helium, at this time along CHAMP’s orbit. When helium is included in
the model, it makes up a very small percentage of the atmosphere and thus has a negligible influence on density and
drag coefficients.

5



(a) (b) (c)

Figure 3: The three subpanels for each of (a), (b), and (c) indicate CHAMP’s altitude, latitude in degrees, and local solar time along CHAMP’s
orbit during a two-hour time period in October of 2003. (a) CHAMP-derived densities with and without helium are included as the blue and blue
dotted lines. TIEGCM modeled densities with and without helium are included as the green and green dotted lines. In this case, the blue solid
and dotted lines match up perfectly, and the same behavior is displayed for the green solid and dotted lines. This indicates that the inclusion of
helium does not impact atmospheric density at this altitude and level of geomagnetic activity. (b) The gold line represents the old, published drag
coefficient values for GRACE computed from the response surface model based on MSIS atmospheric species concentrations. Newly computed
drag coefficients based on a TIEGCM atmospheric composition without helium are shown in dark red, and newly computed drag coefficients based
on a TIEGCM atmosphere that includes helium are shown in light orange. (c) Mole fractions of atmospheric species from TIEGCM without helium
are shown by the dashed lines, while mole fractions of atmospheric species from TIEGCM with helium are included as the solid lines. Helium is
displayed by the red line. This plot style and format is consistent throughout the remainder of this paper.

(a) (b) (c)

Figure 4: The same atmospheric quantities from Figure 3 along CHAMP’s orbit are presented here, but in this case the comparisons are shown for
a quiet solar minimum two-hour time period in December of 2008.

Figure 4 presents the same comparison between TIEGCM with and without helium and CHAMP measurements
for a two-hour time period in extremely quiet solar minimum conditions in December of 2008. For this time period
the helium concentration, when it is included in the TIEGCM model, starts to increase just slightly around the winter
pole which supports a trade-off between helium and oxygen. Helium is still not reaching high concentrations at these
low altitudes, so there is not a significant difference observed in TIEGCM or CHAMP densities/drag coefficients with
and without helium. Thus essentially, at CHAMP altitudes, helium does not significantly impact satellite drag.

3.2. GRACE Altitudes
Helium concentration is higher at GRACE altitudes and behaves differently according to geomagnetic activity

conditions. At higher altitudes, minor species like helium increase in concentration. The atmosphere additionally
becomes more contracted during solar minimum conditions which serves to further increase the concentrations of

6



lighter species. To examine the effect of including helium in TIEGCM on TIEGCM’s ability to predict the atmo-
spheric conditions seen by GRACE, we can look at two representative examples corresponding to geomagnetically
active solar maximum conditions and geomagnetically quiet solar minimum conditions in Figures 5 and 6. Figure 5
shows TIEGCM performance, both with and without helium, compared to GRACE’s measurements for a two-hour
time period in the geomagnetically active solar maximum conditions of October of 2003. Again, no quantitatively
significant difference is observed between TIEGCM densities with and without helium in terms of how well TIEGCM
can predict the GRACE-derived densities as revealed by a mean percent difference for TIEGCM densities with and
without helium averaged over the full week of simulations for October of 2003 of 0.87%. Similarly, the newly com-
puted drag coefficients for GRACE with and without helium do not present with significant differences. When helium
is included in TIEGCM, its fractional concentration again increases by ∼12% at the northern pole.

(a) (b) (c)

Figure 5: The same atmospheric quantities from Figures 3 and 4 are presented here, but in this case the comparisons are shown along GRACE’s
orbit for an active solar maximum two-hour time period in October of 2003.

(a) (b) (c)

Figure 6: The same atmospheric quantities from Figure 5 along GRACE’s orbit are presented here, but in this case the comparisons are shown for
a quiet solar minimum two-hour time period in July of 2009.

Figure 6 shows a comparison between TIEGCM atmospheric quantities modeled with and without helium along
GRACE’s orbit for a quiet solar minimum time period during July of 2009. For this extremely geomagnetically
quiet time period, large deviations (up to ∼60%) between TIEGCM predicted density without helium and TIEGCM
predicted density with helium are revealed. Additionally, small changes (up to ∼25%) in the GRACE-derived density
without helium and GRACE-derived density with helium become apparent. These deviations are maximized right
at the winter pole, which in this case is in the southern hemisphere. In this case, TIEGCM with helium predicts
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Figure 7: The same atmospheric quantities from Figure 6a along GRACE’s orbit for a quiet solar minimum two-hour time period in July of 2009
are presented here, but in this case the MSIS empirically modeled density is also included for comparison purposes. A subpanel including hydrogen
concentration modeled by MSIS is added below the main panel.

a density that is closer to the density inferred from GRACE, especially at the winter pole. Helium inclusion also
has an impact on the drag coefficients for GRACE during quiet solar minimum at the winter poles. The newly
computed drag coefficients increase as helium increases because helium is much lighter than oxygen, and lighter
species have higher velocities when interacting with the satellite. It is also interesting to note that the drag coefficients
computed based on a TIEGCM atmosphere without helium are significantly lower than the previously published drag
coefficients computed by Mehta et al. (2017) based on an MSIS atmosphere. This can be explained due to the fact
that MSIS includes estimates of both atmospheric helium and hydrogen in its outputs which would serve to increase
the drag coefficient due to their lighter relative molecular weights. To confirm the larger concentration of helium
along GRACE’s orbit during solar minimum, Figure 6c shows a significant increase in helium concentration at the
winter poles when helium is included in TIEGCM. Here helium becomes the dominant constituent, and the oxygen
concentration largely decreases. When helium is left out of TIEGCM, TIEGCM predicts that oxygen dominates across
all latitudes.

Helium inclusion in TIEGCM additionally appears to cause significant differences between TIEGCM atmospheres
and MSIS atmospheres along GRACE’s orbit for quiet solar minimum conditions. For the same two-hour quiet solar
minimum time period during July of 2009, Figure 7 shows TIEGCM and GRACE-inferred densities with and without
helium overlaid with the MSIS empirically modeled density for comparison. An additional subpanel is included in
Figure 7 which shows the hydrogen content along GRACE’s orbit as predicted by MSIS. Both TIEGCM densities
with and without helium deviate largely from the MSIS density (with percent differences up to ∼66% and ∼73%,
respectively). Overall, it appears that the TIEGCM density with helium better matches the MSIS density, however
a large discrepancy between the TIEGCM with helium and MSIS densities occurs right at the time when hydrogen
is modeled by MSIS to make up 15% of the atmosphere. TIEGCM does not include hydrogen in its computations,
and this could be an explanation for why TIEGCM with helium overestimates the density here and could advocate for
TIEGCM needing to include hydrogen, as it did helium, to be able to better predict these very quiet, contracted solar
minimum conditions.

4. Conclusions

Helium does not significantly improve TIEGCM estimates at CHAMP altitudes for any latitude or level of ge-
omagnetic conditions. TIEGCM results with helium on average compare essentially the same to CHAMP inferred
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densities and MSIS empirically modeled densities as TIEGCM results without helium. This is shown quantitatively
in Table 2.

Table 2: Effect of helium at CHAMP altitudes

Quantity Average (g/cm3) % Difference

Solar Maximum

TIEGCM density with helium 4.64e-15
CHAMP density with helium 3.83e-15 21.37

TIEGCM density without helium 4.62e-15
CHAMP density without helium 3.84e-15 20.57

TIEGCM density with helium 4.64e-15
MSIS density 4.68e-15 0.82

TIEGCM density without helium 4.62e-15
MSIS density 4.68e-15 1.24

Solar Minimum

TIEGCM density with helium 3.83e-15
CHAMP density with helium 2.10e-15 82.69

TIEGCM densiy without helium 3.80e-15
CHAMP density without helium 2.10e-15 81.02

TIEGCM density with helium 3.83e-15
MSIS density 3.18e-15 20.50

TIEGCM density without helium 3.80e-15
MSIS density 3.18e-15 19.71

Helium makes a larger impact during solar minimum for GRACE altitudes. Most notably, helium improves
TIEGCM predictions for density as compared to GRACE-inferred density and MSIS modeled density at winter po-
lar latitudes during solar minimum conditions. Additionally, on average the drag coefficients computed for GRACE
based on TIEGCM atmospheres with and without helium differed by nearly 7%. These results are quantified in Table
3. We see similar improvements attributed to helium such that TIEGCM densities better match GRACE densities for
moderate Kp times, however the comparison to MSIS density during moderate Kp times is not as straightforward.
TIEGCM density with helium appears to compare much worse to MSIS density than TIEGCM density without he-
lium. However since TIEGCM density with helium compares better to the GRACE-derived density and worse to the
MSIS density than TIEGCM density without helium, this could suggest that MSIS is for some reason not sufficiently
equipped to accurately model solar minimum atmospheres at times of moderate geomagnetic activity.

Thus, helium makes a significant impact on TIEGCM satellite drag estimates at GRACE altitudes (∼500 km)
around the winter poles and during quiet and contracted solar minimum conditions. It is important to emphasize the
role of the contracted atmosphere because this is what allows helium to dip down to these lower altitudes. For other
conditions analyzed in this study, including solar maximum time periods, lower altitudes along CHAMP’s orbit, and
higher levels of geomagnetic activity, TIEGCM with helium did not improve atmospheric drag estimates. Lastly,
during this past solar minimum it is likely that the atmosphere was contracted enough that there actually existed a
significant percentage of hydrogen at GRACE altitudes as indicated by MSIS hydrogen estimates. Perhaps TIEGCM
could improve its solar minimum atmospheric drag predictions if it were to include hydrogen as it did helium.
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Table 3: Effect of helium at GRACE altitudes during solar minimum

Quantity Average (g/cm3) % Difference

Winter Polar Locations

TIEGCM density with helium 1.40e-16
GRACE density with helium 9.36e-17 49.89

TIEGCM density without helium 1.64e-16
GRACE density without helium 1.01e-16 63.24

CD with helium 3.07
CD without helium 2.88 6.81

TIEGCM density with helium 1.4e-16
MSIS density 1.13e-16 23.71

TIEGCM density without helium 1.64e-16
MSIS density 1.13e-16 44.88

Moderate Kp Conditions

TIEGCM density with helium 1.51e-16
GRACE density with helium 1.27e-16 18.81

TIEGCM densiy without helium 1.69e-16
GRACE density without helium 1.31e-16 29.01
TIEGCM density with helium 1.51e-16

MSIS density 1.71e-16 11.62
TIEGCM density without helium 1.69e-16

MSIS density 1.71e-16 1.36
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Abstract

Space weather impacts various facets of our everyday life, from GPS navigation service accuracy to radiation dose on
transpolar flights. Space weather effects at Earth are driven by a wide range of solar and solar wind phenomenolo-
gies. Geomagnetic storms, whose intensity are often described by a geomagnetic index (KP), are a space weather
phenomenon that can affect both space and ground based electrical systems. Current operational forecasts of geo-
magnetic indices use empirically-derived coupling functions or computationally expensive physics models to forecast
short-term KP, and neural networks for 3−to−12 hour ahead prediction. None of these methods provide error or un-
certainty estimation associated with their forecast. For higher values of KP, the accuracy of current methods reduces.
This work aims to provide a KP forecast for 3−hour with uncertainty bounds associated with each prediction. We
will explore both parametric and non-parametric techniques to provide a probabilistic KP forecast and quantify the
uncertainty. Key factors in obtaining a good prediction include appropriate choices of training data and model. We
used selected solar wind parameters to predict KP. Using transformed solar wind parameters, historical KP values
and different transfer functions can increase the accuracy of the models. Our candidate models mainly use dynamic
training sets to produce forecasts. In accordance with this, we used variable training windows to find the best-fitted
model, providing insights about the solar wind parameters and solar cycle and how they affect the coupling to the
geospace environment.

Keywords: uncertainty quantification, space weather, KP, probabilistic forecasting

1. Introduction

Many advanced electrical systems and equipment on the Earth such as navigation systems, communication sys-
tems, satellite systems, and power grid can be impacted by space weather (Ayala Solares et al., 2016). For this reason,
it is desirable to predict the level of geomagnetic activity that results from solar wind driving. To describe the level of
geomagnetic activity the KP index was introduced by Bartels in 1949 (Bartels, 1949). A geomagnetic index describes
the intensity of the magnetic disturbance for a certain period of time. There are two main classes of index available
to describe the disturbances in the Earth’s geomagnetic field, range indices and mean indices. Dst is an example of
the mean index, which is a good proxy for the strength of the ring current and obtained by averaging the low-latitude
magnetometer measurements. On the other hand, we have AP,KP which are examples of range indices, which respond
primarily to middle latitude geomagnetic activities and also a good proxy for magnetospheric convection. The K
index is used to describe the geomagnetic disturbances at a single ground magnetometer observation for a 3−hour
window. The KP index is calculated by the weighted average of the K index of the 13 magnetometer stations around
the Earth. KP is a 3−hourly range index from starts from 0 (very quiet) to 9 (very disturbed) with 28 discrete values
describe by

[
0, 0+, 1−, 1, 1+, ..., 9−, 9

]
(Bartels, 1949). As KP is used to quantify the geomagnetic disturbances in the

upper atmosphere, hence it has been used to categorize the geomagnetic activity. NOAA Space Weather Prediction

Email addresses: shibaji7@vt.edu (Shibaji Chakraborty), smorley@lanl.gov (Steven Karl Morley)
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Center (SWPC) classifies geomagnetic activity into six levels and the categorical division is shown in the Table-1.
Also, note that the KP index is widely used as an input to other magnetospheric models (Ji et al., 2013).

There are plenty of studies aiming to build coupled physics-based models to forecast KP and understand the
relationship between the KP and solar wind. These physics-based models help us to boost our knowledge about the
correlation between, for example, solar wind parameters and reconnection rate (Borovsky et al., 2008). However, the
coupled physics-based models are able to provide a KP forecast less than 1−hour ahead of time (which is the time
taken by the solar wind to reach the Earth from L1 point)(Bala and Reiff, 2012). Along with this complex physics-
based model, many data-driven studies (most of them use Neural Network; NN)(Wing et al., 2004; Costello, 1998;
Boberg et al., 2000; Tan et al., 2017) also become very popular to extract relational dependencies between the solar
wind and KP during the last couple of decades. These data-driven methods do not provide physical insights in the solar
wind as the physics-based models, but they are very good in capturing the complex and nonlinear trends (nonlinear
physics) within the solar wind dataset and are able to forecast KP for 3−to−12 hours ahead of time effectively. Hence,
there are couple of options available to build a robust KP forecast model. In this study, we will discuss a data-based
KP forecast model.

Storm Level KP Range
G0 KP < 5−

G1 5− ≤ KP < 6−

G2 6− ≤ KP < 7−

G3 7− ≤ KP < 8−

G4 8− ≤ KP < 9−

G5 KP > 9−

Table 1: Table showing different categories of geomagnetic storm and associated KP. The categorization is done based on intensity of the geomag-
netic storm following the NOAA SWPC scales.

Since Costello proposed the first KP prediction model based on a Neural Network (NN) (Costello, 1998), many
subsequent forecast models (Wing et al., 2004; Boberg et al., 2000; Tan et al., 2017) exploited different solar param-
eters and implement different variants of NN to improve the forecast accuracy. Later, people also used historical KP

values including solar wind parameters to capture the state of the magnetosphere (Tan et al., 2017). Over the time as
our understanding of the reconnection, physics improved modeler have started introducing new parameters or combi-
nations of the solar parameters to their models to increase the accuracy of the models and incorporate the physics.

In this work we use a nonparametric-Bayesian method to forecast KP and the associated uncertainty, then exploit
the uncertainty bounds in KP to provide a probabilistic forecast. The paper is organized as follows: Section 2 explains
the data analysis, Section 3 describes the different methodologies, compare the results, then Section 4 shows how we
develop a probabilistic forecast and finally paper closes with discussion and conclusion.

2. Data Analysis & Preprocessing

Different solar wind and IMF parameters are used in different models (Luo et al., 2016). We started using 22 
years of 1 minute resolution solar wind data from OMNI database (with all x, y, z components of velocity and IMF 
parameter). Clearly, 22 years of 1 minute resolution data is difficult to process and train any model. Also, 1 minute 
resolution data may carry redundant temporal information about the solar wind structures. Most of these parameters 
are correlated with each other and might carry redundant solar wind structure information. We did a cross-correlation 
study among all the parameters to reduce redundant information about the solar wind. It seems parameters (including 
x, y, z components) have redundant information (few of them are highly correlated with each other). To check the 
redundancy in the temporal dataset we did an auto-correlation study. Figure-1 shows autocorrelation functions for 
various solar wind parameters, for both solar minima and solar maxima. Autocorrelation function shows that 2 − 3 
hour interval dataset is good enough to represent the variability in the solar wind data. The autocorrelation functions 
show that many of the solar wind parameters are highly autocorrelated and thus points with small temporal separations 
are not independent and carry redundant information. For this reason we use to 3−hour resolution datasets to train our
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models.

Figure 1: Auto-correlation functions of different solar-wind parameters during: (a) solar minima, and (b) solar maxima.

Features Symbol Units Transformation
Anti-sun ward component of IMF Bxm nT BoxCox

Transverse component of IMF BTm =
√

B2
ym

+ B2
zm

nT BoxCox

IMF clock angle θc = arctan Bym
Bzm

radian BoxCox

Bulk Velocity v =
√

v2
xm

+ v2
ym

+ v2
zm

km s−1 BoxCox

Number Density nm m−3 BoxCox
Temperature Tm K BoxCox
Dynamic Pressure Pdynm Nm−2 BoxCox
Mach number Mam 1 BoxCox
Plasma Beta βm 1 Er f
Historical K p KPm (t0 − 1) 1 BoxCox

Table 2: Table showing input features of the model. Note that, the transformation is only needed to fit the data to Gaussian process model.

BoxCox→ B(x) = sgn(x).loge x and Er f → er f (x) = sgn(x).
√

2er f −1
(
1 − 2e

|x|.a
b

)

These solar wind energy and magnetospheric coupling are known to be constrained by the solar wind parameters
and the state of the magnetosphere (Dungey, 1961; Baker et al., 1981). Many prior studies show that plasma velocity,
components of the interplanetary magnetic field and particle density are the major driving parameters of solar wind
coupling (Borovsky et al., 1998; Baker et al., 1981). People suggested many theoretically and empirically derived
“coupling functions” as a function of different solar wind parameter since the 1960s, and validate them by correlating
coupling functions with geomagnetic indexes Dst,KP etc (Kan and Lee, 1979). Studies also show that transverse(
BT =

√
B2

y + B2
z

)
magnetic field strength and IMF clock angle

(
θc = arctan

( By

Bz

))
driven coupling functions have

higher correlation with geomagnetic activities, than individual IMF components (Kan and Lee, 1979; Newell et al., 
2007). Recent studies show that solar wind plasma can be categorized into 4 different kinds, having different charac-
teristics and associate with different types space weather activities. These different kinds of plasma can be categorized 
using temperature and plasma constituents (Xu and Borovsky, 2014). Studies also show that plasmaspheric drainage 
plumes slow down the solar wind reconnection rate and local magnetic field strength (B) and plasma mass densities
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(ρ) on the bow shock and magneto-sheath controls the reconnection rate (Borovsky et al., 2008). Based on this prior
knowledge we consider 9 transformed solar wind parameters, and historical KP to as model features, listed in Table-2.

Figure 2: Distribution of KP. 22 years 1995 − 2014 of data has been used in this plot. f (KP) is the frequency (i.e. number of events) plotted on a
logarithmic scale. Black virtical line is KP = 5−.

We converted the reported KP values to decimal numbers using n ± 1
3 following Tan et al. (2017). Now, this

transformation of KP from a quasi-logarithmic ranges to a decimal numbers and treating it as a continuous will
introduce some error in KP prediction.

2.1. Data Imbalance

We have analyzed the distribution of KP values as shown in Figure-2. Figure-2 shows the distribution (number of
KP) of 22 years of KP data. From the figure we can conclude that, most of the events are distributed between [0, 5−)
and a very small number of extreme events ≥ 7. From the distribution, it is clear that the ratio of storm events versus
nonstorms has a ratio of ≈ 1

20 . Note that, this number goes down with an increase in KP level, i.e. if we take the ratio
of more extreme events (KP ≥ 8+) versus nonstorm events then number drops to ≈ 1

200 . Hence storm versus non-storm
ratio is very small and it becomes a data imbalance (Estabrooks et al., 2004) or anomaly detection problem.

3. Methodology

In this section, we will discuss the basic characteristics and detailed architecture of the proposed model. The 
proposed model as shown in Figure-3 has two layers, a deterministic classifier to separate storm from nonstorm 
conditions and two different regressors; the regressor selection depends on the outcome of the classification step. 
The classifier separates extreme (KP ≥ 5−) versus quite events (KP < 5−), and the regressors are used to provide 
a probabilistic KP forecast (provides a distribution of KP as a forecast instead of one value). Also, note that these 
regressors use dynamic training window for model training. We used this type of mixed architecture to handle the data 
imbalance issue as described in the previous section-2. We tested multinomial classification over binary classification 
to subdivide the storm conditions to more classes (> 2) to get a better prediction, but an introduction of a new class 
(severe storm, storm, and nonstorm) reduces the number of samples and accuracy of the classifier significantly, hence 
we have used a binary classifier. Now the question is how to build a probabilistic regressor? Also what type of 
classifiers and regressors will be suitable for these types of dataset and forecasting model and how to implement 
them? We tested various families of deterministic algorithms to examine which work the best for this case.
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Figure 3: Proposed model architecture: Classifier is deterministic in nature, and regressors are probabilistic in nature. The threshold (Th) for the
classifier is KP = 5−. TrW1 & TrW2 are the variable training window for two regressors.

3.1. Binary Classifier

We use a deterministic binary classifier to separate active versus quiet time events. We tested different classes of
deterministic classifiers. We have used 5−fold cross-validation with 22 years of data to train the classifier models.
The receiver operating characteristic curves (ROC) for these they are shown in the Figure-4. The ROC curve is the
true positive rate (TPR) against the false positive rate (FPR) at various threshold settings. Each panel in Figure-4
represents a family of deterministic binary classifier algorithm with more than one algorithm. The diagonal dashed
lines represents no skill line and left top corner represents highest skill. Area enclosed by the individual ROC curve
also represents the skill of the model. Among all these different categories Ensembles (Random Forest) and Linear
Discriminant Analysis (LDA) performs the best, and we therefore adopted the random forest as our classifier.

3.2. Regression

The basic feature of the regressor has to be probabilistic. However, we also used a few deterministic algorithms
to test out the performance of the model. Also, this part used dynamic training windows to train the model. The
performance comparisons of different algorithms, as quantified by the root mean square error (RMS E) of the output.
The different lengths of training window is listed in Table-3 and the RMS E values were computed based on 22 years
of test data.

Algorithm (Deterministic) Trw = 27 days Trw = 54 days Trw = 81 days
Linear Regression 0.78 0.78 0.78
Elastic Net 0.85 0.84 0.85
Bayesian Ridge 0.78 0.78 0.78
Decision Tree 0.91 0.88 0.86
Extra Tree 0.91 0.88 0.86
Bagging 0.87 0.87 0.87
Ada Boosts 0.90 0.87 0.86
Random Forests 0.81 0.79 0.79
K-Nearest Neighbor 1.18 1.05 0.99
Long Short Term Memory 0.94 − −

Table 3: List showing performance comparisons of different regression algorithms (deterministic) with different training window. “−” denotes the
configuration has not been tested.
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Figure 4: Receiver operating characteristic (ROC) curves for different families of classifiers. The diagonal dashed line inside each panel is no skill 
line and other lines are skill lines for individual algorithm. AUC is the area under the curve.

3.2.1. Dynamic Training Window
Instead of using a part of the dataset as training and a set for testing, we used a dynamic training window. For each 

time step the model is trained using the interval of preceding data and the prediction is then tested using subsequent 
intervals. Test shows that different phases of the solar cycle need different training windows to minimize the training 
error. Figure-5 shows one example of mean square error (MSE) with variation with training window (in days) during 
solar minima during 1995. Figure-5 clearly shows ≈ 25−27 days training window is sufficient to minimize the RMSE. 
Usually, for declining phase of solar minima, it takes ≈ 27 days to train the model while it takes ≈ 7 − 14 days training 
window during solar maxima period.

3.2.2. Non-parametric Bayesian Method
One of the main characteristics of the regressors is that they provide the probabilistic prediction, i.e. they predict a 

distribution of output parameter instead of only one value. Non-parametric models are a way of getting a very flexible 
model. Many can be derived by starting with a finite parametric model and taking the limit as an infinite number 
of parameters. Non-parametric models can automatically infer an adequate model size/complexity from the data. 
Bayesian methods assume that all the parameters which have been used to describe the dataset are coming from a 
distribution, hence the predicted output from a Bayesian model also follows a distribution. Bayesian method assumes 
some prior knowledge about the distribution which is updated based on the observations, given by the equation-1. Note 
that, π(θ|X) is the conditional posterior distribution (which conditioned upon the data X, hence change in X will alter 
π(θ|X)), π(θ) is the prior knowledge of the parameter θ and L(θ|X) is the likelihood function of θ. Bayesian methods are 
most powerful when sufficient amount of observation (X) is there to describe the reality or prior assumption is close 
approximation of the reality. The Gaussian process, and Dirichlet process are examples of non-parametric Bayesian
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Figure 5: Variation of root mean square error (RMSE, ε) in with the length of the training window (τ) in days. Each point of this curve is generated
using average RMSE of two months of data.

methods (Pozzo et al., 2018).

π(θ|X) =
L(θ|X).π(θ)∫

θ
L(θ|X).π(θ)dθ

(1)

3.2.3. Gaussian Process Regression (GPR)
Gaussian process regression (GPR) is a non-parametric Bayesian method, which assumes that the output parame-

ter is a distribution, and it is Gaussian in nature. The underlying architecture of GPR is described in Gaussian Process.
Gaussian Process is a stochastic process which assumes that all the data points are coming from a multivariate normal
distribution. The distribution of a Gaussian process is the joint distribution of all random variables and it is a distri-
bution over functions with a continuous domain. Equation-2 describes the mathematical backbone of the Gaussian
Process: [

f
f∗

]
← N(M,Σ) = N

([
mX

mX∗

]
,

[
κXX κXX∗
κXX∗ κX∗X∗

])
(2)

where, ∗ denotes the unobserved or predicted values. In the above equation-2 “ f ” is the output (in this case KP),

X is a vector of regressors (here 10 features listed in Table-2), M is the mean vector described by
[
mX

mX∗

]
and Σ is

the correlation matrix described by
[
κXX κXX∗
κXX∗ κX∗X∗

]
and κ is the kernel function. Kernels are co-variance functions,

define the correlation between two different points (x and x′). Different co-variance/kernel functions have different
behaviour. Based on problem description and dataset we adopt kernel. Some sample co-variance/kernel functions are
squared error kernel, rational quadrature kernel, periodic kernel described by equations-3 to 5 respectively. Based on
our analysis rational quadratic kernel κRQ performs the best on these OMNI datasets.
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κS E(x, x′) = σ2e−
1
2

(x−x′ )2

2λ2 (3)

κRQ(x, x′) = σ2
(
1 +

(x − x′)2

2αλ2

)−α
(4)

κPER(x, x′) = σ2e−
2 sin2 π|x−x′ |/p

λ2 (5)

We used this algorithm for KP prediction and the outputs are shown in the Figures 6 and 7. Figures 6 and 7 shows
solar minima during 1995 and solar maxima during 2004 respectively. Each figure is showing mean prediction (blue
dots), 50% and 95% confidence intervals (dark and light blue) and true observations (red dots) of KP for 2 month
window (July and August). Figure-6 shows most of the observations (≥ 90%) lie within the 95% predicted confidence
interval. This shows, GPR is a good approach to forecast KP with uncertainty. However, a meticulous examination of
Figures 6 and 7 show that GPR is unable to capture the transient physics in the solar wind and variability within KP.
Not only model is unable to capture storm time high KP values, but it also unable to capture the variability of KP during
the quiet time (there is very small variability in mean predicted KP). This leads to our next algorithm Long Short Term
Memory (LSTM) with Gaussian Process Regression to increase the accuracy of the model. Long Short Term Memory
networks typically known as LSTM are a special kind of Recurrent Neural Networks which are capable of learning
long-term temporal dependencies. Capturing the information for long periods of time is the implicit behavior of an
LSTM. It has a memory that is used to capture the state of the process and based on the requirements user can update
the memory. Hence, LSTMs are well-suited for making predictions based on time series data.

Figure 6: 3−hour forecast of KP using Gaussian Process Regression (GPR) for a solar minimum period (1st July − 31st August, 1995). Blue dots 
are mean prediction and red dots shows observed KP. Central dark blue shaded region shows 50% confidence interval and light shaded region 
shows 95% confidence interval.

3.2.4. Deep GPR (Long Short Term Memory + Gaussian Process Regression)
Probabilistic modeling with neural network architectures constitutes a well-studied area of machine learning 

(Hochreiter and Schmidhuber, 1997). The recent advances in the domain of deep (CireÅan et al., 2012) learning 
have brought this kind of models again in popularity. A deep neural network has multiple layers between input and 
output layers. Empirically, deep models seem to have structural advantages that can improve the quality of learning 
in complicated data sets associated with the abstract information. Deep GPR are a deep belief network based on 
Gaussian process mappings (Al-Shedivat et al., 2016). Deep architecture helps to capture the nonlinear trends in data 
to provide better accuracy. Figure-8 shows the output of deep GPR algorithm. This figure has the similar format to 
the the previous figures - 6 & 7. Clearly, we can see an improvement in prediction in KP and is able to capture the 
variability during quiet time and geomagnetic active conditions. However, the confidence interval of the predicted 
KP is smaller than the previous model which leads more than 10% of the observations lies outside 95% confidence 
interval. The probabilistic prediction is therefore is poorly calibrated. Additional technologies could be applied to the
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Figure 7: 3−hour forecast of KP using Gaussian Process Regression (GPR) for a solar maximum period (1st July − 31st August, 2004). This figure
has exactly similar format to the previous Figure-6.

Figure 8: 3−hour forecast of KP using LSTM + Gaussian Process Regression (GPR) for a solar maximum period (1st July − 31st August, 2004;
same duraion as Figure-7). This figure has exactly similar format to the previous Figure-6. The boxed region shows the increase in accuracy and
ability to capture overall variability by introducing deep GP (LSTM + GP) algorithm.

calibrate forecast but this has not been done yet. Table-3.2.4 shows a quantitative comparison of RMSE between this
algorithm (deep GPR) with simple GPR.

Algorithm (Probabilistic) Trw = 27 days Trw = 54 days Trw = 81 days
Gaussian Process Regression 1.04 − −

LSTM + GPR 0.91 − −

Table 4: List showing RMSE(performance) comparisons of different regression algorithms (probabilistic) with different training window. “−” 
denotes the configuration has not been tested.

3.3. Probabilistic Storm Forecast

This section describes how to exploit the uncertainty in predicted KP (as described in previous section) to provide 
probabilistic storm forecast as shown in Figure-9. Figure-9a is a zoomed in version of Figure-8, which is one week 
(22nd July − 28th July, 2004) of 3−hour ahead of KP prediction using deep GPR (LSTM with GPR) algorithm and also 
provide chance (probability) of storm associated with each predicted KP (mean KP values are shown in Figure-9a top
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panel, color coded by probabillity of storm). Storms having probability greater than 30% are reported in the figure,
while the color coded KP show individual storm prediction following coloring scheme: Pr(e ≥ G1) < 30% →green;
30% ≤ Pr(e ≥ G1) ≤ 60% →orange; Pr(e ≥ G1) > 60% →red. Figure-9b describes only one forecasted event
denoted by vertical black line in Figure-9a. Vertical red and dotted black lines referenced to observed KPand KP = 5−.
The shaded area bounded by the predicted KP distribution and KP = 5− line total chance (cumulative probability)
exceeding a threshold value (in this case it is KP = 5−), which is the probability of occurring a geomagnetic storm.
Figure gave us a close look at the predicted KP, which shows deep GPR provides reliable storm forecast. However,
model is unable to capture the sharp transition of KP later in this week, there is a delay associated with the prediction.
We can use similar method to estimate the chance of exceeding KP any threshold values to predict the chance of
different levels of geomagnetic storm (as described in Table-1).

Figure 9: 3−hour forecast of geomagnetic storm & KP using Deep Gaussian Process Regression (LSTM with GPR) for a solar maxima period
(22nd July − 28th July, 2004): (a) predicted KP distribution (same format as Figure-6) with probability shown in traffic light colors, (b) illustration
of the method to extract probability of storm occurrence for one prediction marked by vertical black line in panel (a). Black dashed lines in both
panels represent the threshold KP = 5−, red line in panel (b) is observed KP.
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4. Discussions

In this paper, we propose a dynamic model with two-layered mixed architecture to provide a probabilistic geo-
magnetic storm forecast. We compare different families of algorithms with proposed two-layered architecture with
deep GPR. Most of the previous studies used physical models or neural network or NARMAX (nonlinear autoregres-
sive moving average model with exogenous inputs) models to forecast geomagnetic storms, which are still state of
the art. Recent studies have shown that LSTM is a good algorithm to capture temporal variations and transients in
the solar wind data (Tan et al., 2017), which is also consistent in our method. The two-layered architecture is used
to separate “storm” and “nonstorm” conditions which increase the accuracy of the forecasted KP by treating it as a
data imbalance problem. However, the errors in classifier (misclassification error) might increase the individual KP

prediction error, which raises the question of model credibility during storm time prediction. Also this can introduce
a sharp transition in model behavxiour in the boundaries. The ensemble random forest classifiers work best, but there
is plenty of room to improve. Future studies will address the problems with the classifier. While working with the
second layer (regression) of the proposed architecture we faced different challenges. We used the LSTM neural net-
work with GPR to reduce the prediction errors and to get the uncertainty bound. In one of the optimization steps GPR
inverts the covariance matrix, which is a computationally expensive task and explode exponentially with the training
dataset. However, a neural network requires a large number of data sets to effectively train. To overcome this caveat
we used a dynamic model with relatively shorter training window (the dataset is smaller as compared to other NN).
This also helps us to infer physics about the solar wind parameter and some magnetospheric coupling.

In data analysis and preprocessing, we faced a few challenges, some of them are critical. Some of the minor prob-
lems is converting KP from a quasi-logarithmic range values to a decimal continuous values using n ± 1

3 this formula,
which introduces errors in the system. Missing data was one of the critical problems as we are using LSTM. Also de-
termining the length of the LSTM vector to capture sufficient temporal variation was challenging. We started using 1m
interval data (we had to resample KP to 1m), but data vector was too large to handle and there is high auto-correlation
among the as shown in Figure-1. Hence we started using 3−hour mean values of the solar wind data. However, in
Figure-9a we can clearly see the model is unable to capture the transients that drive rapid changes in magnetic activity
and it responds much later (≈ 9−hours). Then we analyzed the correlation between solar wind parameters to reduce
the number of an optimal number of parameters. We found that the 10 features described in Table-2 are good enough
to build a storm forecast model. Although Mam and βm shows large correlation, we used both of them into the model
to capture reconnection physics. Future studies will try to address these problems and use higher resolution solar wind
data to better capture the temporal variation. Future study also aim to provide the model with more information about
what likely to to happen with a horizon of more than 1−hour. One method would be to introduce more solar data,
such as X-ray flux or magnetograms to capture the likelihood of solar transients.

To reduce the time complexity and increase model accuracy we used a dynamic model with different training
windows. Study shows that (as shown in Figure-5) dynamic model takes almost ≈ 27 days of historical data to
optimally train the data during declining phase of solar cycle, while it takes only a few days or a couple of weeks
(≈ 7 − 14 days) of data to minimize the MSE of the predicted KP. This shows solar minima dominated by slow
but consistent solar wind which repeats each 27 days while during solar maxima solar wind consists with turbulent
structures which last for only for few days. There is plenty of opportunities to improve on this model, a few of them
are discussed in this study and the rest of them will be targeted in the future studies.

5. Conclusions & Future Work

The main purpose of this study has been to build a probabilistic storm forecast model by exploiting the uncertainty 
in the forecasted KP. Our secondary objective was to quantify the uncertainty in the KP forecast. Results show that 
deep GPR (Gaussian Processes with LSTM) is a cutting-edge tool for probabilistic space weather forecast. But one 
bottleneck of introducing LSTM before the Gaussian process is reduction in the confidence interval of the predicted 
KP, hence more than 10% observed KP lies outside 95% confidence interval. Testing shows dynamic model takes 
27 days to training window to provide an optimal forecast during declining phase & solar minima and 7 − 14 days 
window for solar maxima. This provides insights about the solar cycle and sun activity, which shows a slow and steady
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long lasting solar wind during solar minima and more turbulent transients (short burst of intense energy) during solar
maxima. Study shows solar wind data alone is not adequate to capture all the transient physics in solar activity. Future
work will examine how the introduction of GOES X-ray & other datasets able to capture more solar transients.
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Abstract

Electron Cyclotron Harmonic Wave (ECH) is an electrostatic emission between electron cyclotron harmonic bands,
naturally found in the Earth’s magnetosphere. Such emission is dominant for precipitating energetic electron in the
magnetotail. Magnetospheric ECH wave is excited by the loss cone distribution of hot electrons (0.1 − 10s keV),
Statistically, its intensity is stronger at nightside and dawnside than at dayside and duskside, and increases with the
geomagnetic-activity level. In this study, we, for the first time, simulate the global ECH wave evolution during a
geo-storm (March 16th to March 18th, 2013). We use Ring current-Atmosphere interaction Model and Self-Consistent
Magnetic (RAM-SCB) Model to simulate electron distribution in the equatorial plane from 3 RE to 6 RE , where RE is
Earth radius, and then use linear growth rate formula of ECH wave to evaluate ECH instability. We find our simulated
results are consistent with the statistical observation. ECH wave growth rates are much more enhanced at nightside
and dawnside, compared with those at dayside and duskside. During a weak activity prior to the storm, the unstable
region of ECH wave locates at > 4 RE to 6 RE , and the instability is moderate at nightside and dawnside. Just before
the geo-storm (quiet time), the unstable region moves to 5 ∼ 6 RE , and the ECH instability becomes very weak. During
the main phase of the storm, the unstable region can extend to lower altitude (3 RE to 6 RE), and the ECH instability
is strongest and can extend to dayside. During the recovery phase, the unstable region returns to 5 ∼ 6 RE , and only
midnight instability is strong. The inner boundary of unstable ECH wave region is coincident with the plasmapause
location during the storm, because the drifting path of energetic electrons, which store free energy fro ECH waves, is
well confined outside the plasmapause. Our work greatly advance our understanding of the ECH spatial and temporal
evolution during storm times, and is an important step to build a storm-time physical model for ECH waves and their
wave normal angles, which is valuable for radiation belt modeling work.

Keywords: ECH global instability, RAM-SCB, linear growth rate, geo-storm

1. Introduction

Electron Cyclotron Harmonic (ECH) waves are an electrostatic emission between electron cyclotron harmonic
bands, which is also known as electron Bernstein mode. ECH waves are mostly observed at nightside and dawnside

Email addresses: xu.liu1@utdallas.edu (Xu Liu), mengel@lanl.gov (Miles A. Engel), vania@lanl.gov (Vania K. Jordanova),
lunjin.chen@gmail.com (Lunjin Chen)
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within ∼ 6◦ of the magnetic equator with 4 < L < 10 (Meredith et al., 2009) with electric field amplitude up to several
mV/m and can extend to magnetotail region with amplitude several tenth mV/m (Zhang et al., 2015). For an enhanced
geo-activity, the ECH waves can extend to the dayside and duskside (Ni et al., 2017) and to inner L shell (Meredith
et al., 2009) with enhanced intensity. ECH wave is usually observed outside plasmapause.

In the Earth’s magnetosphere, ECH waves are thought to be excited by the electron loss-cone distribution (Ashour-
Abdalla and Kennel, 1978). Perviously, the ECH wave instability is evaluated by solving the analytic hot electrostatic
dispersion relation (Ashour-Abdalla and Kennel, 1978) with an electron phase space density composed by the sub-
traction of two bi-maxwellian distribution (Ashour-Abdalla and Kennel, 1978; Horne, 1989; Horne et al., 2003; Ni
et al., 2012; Zhou et al., 2017). However, such phase space density can hardly describe the observed phase space
density. Recently, Liu and Chen provide a growth rate formula for ECH wave, which allows the phase space density
to have core bi-maxwellian shape and a fine arbitrary shape. Such method is briefly introduced in the next section.
By using Liu and Chen’s formula, we can fit the observed phase space density by several bi-maxwellians f0 and find
the difference f1 between observed and fitted phase space density. Then, we can apply the formula to find the linear
growth rate of ECH waves.

ECH waves are dominant for forming pulsating aurora (Liang et al., 2010) and diffusive aurora (Ni et al., 2012;
Zhang et al., 2015). Liang et al. (2011) suggests that the fast flow-driven dipolarization and electron injection from the
magnetotail can excite ECH waves, and then, those ECH waves precipitate energetic electron to form diffuse auroras.

To study the ECH wave-driven pitch angle scatting and determine the contributions of ECH waves to the diffuse
auroral electron precipitation, one needs a storm-time physical model for ECH waves. In this study, we use RAM-
SCB model and Liu and Chen’s linear growth rate formula to provide a global ECH instability distribution for the
inner magnetosphere during a geo-storm, which greatly advance our understanding of the ECH spatial and temporal
evolution during storm times. This work is also an important step to build a storm-time physical model for ECH
waves. We briefly introduce RAM-SCB model and Liu and Chen’s formula in the section 2. A storm-time case is
presented in section 3, followed by the conclusion and discussion.

2. Methods

In this section, we introduce the RAM-SCB model, which provides us the global electron phase space density
during a chosen time period. Then, we present the Liu and Chen’s ECH linear growth rate formula briefly.

2.1. RAM-SCB model
The Ring current Atmosphere interactions Model with Self Consistent magnetic field (RAM-SCB) is a model

that combines a ring current plasma kinetic model with a 3-D force-balanced magnetic model. The RAM portion
solves the particle kinetic equations to yield the bounce-averaged plasma differential flux as function of time, L shell,
Magnetic Local Time (MLT), energy and pitch angle for H+, He+, O+ and e−. The computational domain covers
all MLT intervals with radial region from 2 to 6.5 RE in the equator of Solar-Magnetic coordinate. The SCB model
provides the magnetic field by solving the force balance equation between J × B force and pressure gradient force.

2.2. ECH linear growth rate formula
To solve the ECH linear growth rate, we consider that the electron distribution with two components f = f0 + f1,

in which f0 is a dominant bi-Mawellian population (shown below), and f1 is a tenuous and arbitrary population.
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, where Ne, ae and ve,d denote number density, thermal velocity and drifting velocity of electron, respectively.
For only considering bi-maxwellian distribution f0, the exact solution ω0 of hot plasma dispersion relation, equa-

tion (1) of Ashour-Abdalla and Kennel (1978), satisfies
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, where k denotes wave number. ωpe = ( q2
e

ε0me
)1/2 denotes electron frequency with unit number density, where qe and me

denote charge and mass of electron . Ωe denotes electron cyclotron frequency, λe = 1
2 ( k⊥ae,⊥

Ωe
)2, In is first kind modified

Bessel function of order n and Z(ze,n) is plasma dispersion function with argument ze,n =
ω0−nΩe−k‖ve,d

ae,‖k‖
. ω0 is the root

of equation (2), which in general is a complex number.
The total linear growth rate satisfies
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Here ω0r and ω0i are real and imaginary part of ω0, respectively. Jn is first kind Bessel function.

3. Global ECH wave instability during a geo-storm

To investigate the ECH wave instability during a geo-storm, we choose a ’GEM event’ from March 16th to March 
18th, 2013. Figure 1 shows the storm began around 05:00 UT March 17th (Figure 1b), and Dst index reached the 
minimum around 20:30 UT, then it took two days to recover. During the main and fast recovery phase, the Kp (Figure 
1a), Ap (Figure 1c) and AE (Figure 1d) indices enhanced greatly. The peak value of AE index is above 1800 nT . 
Before this big storm, a weak substorm happened from 00:00 UT to 12:00 UT, March 16th (Figure 1d).

We use the RAM-SCB model to simulate the global energetic electron phase space density (PSD) and magnetic 
field during this time period. Figure 2 shows a global electron PSD at L = 6 with a 3-hour MLT interval at 09:00 
UT, March 16th (first solid vertical line in Figure 1). The electron PSD is distorted from bi-maxwellian shape as 
electron drifts eastward. To find the linear instability, the electron PSD is fitted by a bi-maxwellian distribution. Then, 
the electron can be splitted into two parts: the bi-maxwellian part ( f0 in subsection 2.2) and the difference ( f1 in 
subsection 2.2) between the PSD from RAM-SCB model and fitted bi-maxwellian distribution.

The ECH instability corresponding to this electron PSD can be evaluated by equations (2)-(4). Figure 3 shows 
ECH normalized wave frequency and linear growth rate of 1st harmonic band as function of k/k0 and wave normal 
angle for MLT = 0, L = 6 at 09:00 UT, March 16th. k0 here is reciprocal of Larmor radius with thermal velocity of 
bi-max perpendicular temperature. The wave frequency decreases with k/k0 and is not sensitive to the wave normal 
angle at k/k0 <∼ 170. However, the growth rate only confines at a small region with very oblique angle.

We then compare the growth rate value of 1st and 2nd harmonic bands for different L, MLT and for different storm 
phase. We choose 4 representative moments: 09:00 UT March 16th (weak substorm), 02:00 UT March 17th (pre-
storm, as well as, quiet time), 18:00 UT March 17th (main phase) and 08:00 UT March 18th (recovery phase), shown 
by the solid vertical lines in Figure 1.

To erase the impact of the discontinuity of linear growth rate (Figure 3b) caused by the irregularity of electron 
PSD from RAM-SCB model, we use the mean value of the growth rate from thousandth of peak growth rate to peak 
growth rate. Figure 4 shows the global ECH wave instability for 1st harmonic band at those 4 moments. We find ECH 
wave growth rate are much more enhanced at nightside and dawnside, compared with those at dayside and duskside 
for active time (Figure 4a, 4c and 4d), which is consistent with the statistical observation. During the weak activity 
prior to the storm (Figure 4a), the unstable region of ECH wave locates at > 4 RE to 6 RE , where RE is Earth’s radius. 
The instability is moderate at nightside and dawnside. Just before the storm (Figure 4b, quiet time), the unstable 
region recovers to 5 ∼ 6 RE , and the ECH wave instability becomes very weak. During the main phase of the storm 
(Figure 4c), the unstable ECH wave region can extend to lower L shell region (3 RE to 6 RE ), and ECH instability is 
strongest and can extend to dayside. During the recovery phase (Figure 4d), the unstable region returns to 5 ∼ 6 RE , 
and only midnight instability is strong.
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Then, we compare the location of unstable region with the plasmapause location from Liu et al. (2015) (sold black
lines in Figure 4a-4d). We find the unstable region is always terminated by the plasmapause, because the drifting path
of energetic electrons, which store free energy for ECH waves, is well confined outside the plasmapause. Figure 5
shows the global ECH wave instability for 2nd harmonic band with same format as Figure 4. It shows similar results
compared with 1st harmonic band.

4. Conclusion and Discussion

The energetic electron phase space density is simulated for a GEM-event storm (March 16th, 2013 to March 19th,
2013) by RAM-SCB model. The electron cyclotron harmonic (ECH) wave instability is analyzed for 4 chosen time
(weak activity before storm, pre-storm, main phase and recovery phase) for 1st and 2nd harmonic bands. Our principal
conclusions are as follows:

1. The ECH wave instability is stronger at nightside and dawnside, compared with dayside and duskside.
2. The ECH wave instability is very weak at quiet time, and the unstable region is only limited near 5 ∼ 6 radii. At

the main phase of a geo-storm, the ECH wave instability becomes stronger and the unstable region can extend
to dayside and 3 radii in the nightside and dawnside. At the recovery phase, the ECH wave instability becomes
weak again and the unstable region returns to 5 ∼ 6 radii.

3. The inner boundary of unstable ECH wave region is coincident with the plasmapause during the storm.

We, for the first time, simulate the global ECH wave during a geo-storm by analyzing its instability. Our work 
greatly advances our understanding of ECH wave spatial and temporal evolution during storm times and is an impor-
tant step to build a storm-time physical model for ECH waves and their wave normal angles. Such work is valuable 
for modeling of radiation belt.

For the electron phase density simulation, we do not consider the wave (ex. whistler mode, MS wave and EMIC 
wave etc) effect on phase space density. It should lead to small difference for weak activity, pre-storm and main 
phase, because for weak activity, the beginning of the simulation, the simulation time is too short for wave effect. At 
pre-storm, the wave should be weak and lead small difference for PSD. At main phase, even though the wave intensity 
is large, but it needs more time to scatter the injected electrons from magnetotail. Only at recovery phase, the wave 
should lead big difference to the PSD. This may be the reason that the simulated nightside ECH wave instability at 
recovery phase is still strong. However, the observed ECH wave intensity at recovery phase should be weak. To more 
realistically simulate the PSD for recovery phase of a storm, we need to include a well-established wave model in the 
future.

Using just one bi-maxwellian distribution to fit the PSD works well for nightside, but the fitting becomes worse 
and worse as the electron drifting to the duskside. To better fit the PSD, several bi-maxwellians may be needed for the 
dayside and duskside magnetosphere. To complete this fitting, we need an automatic method to find the initial guess 
parameters of those several bi-maxwellians by using non-linear fitting for different L, MLT and time. We will address 
this question in the future.
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Figure 2: The electron phase space density from RAM-SCB model as function of v‖, v⊥ and magnetic local time at L = 6. v‖ and v⊥ are parallel
and perpendicular velocities, respectively.
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Figure 4: The global ECH wave instability as function of L, MLT at (a) weak activity, (b) pre-storm (quiet time), (c) main phase, (d) recovery phase
for 1st harmonic band. solid black lines denotes plasmapause location by Li et al. (2015).
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Figure 5: The global ECH wave instability as function of L, MLT for 2nd harmonic band with similar format to Figure 4.
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Abstract

In this study we addressed the effects of systematic uncertainty on energy spectra parameters derived from measure-
ments made by space-borne instruments. A flexible Markov chain Monte Carlo sampler model is presented which
can be used to estimate the range of energy spectra that are statistically consistent with observations. Furthermore,
the instrument response function uncertainty is considered in the model, which allows for the estimation of systematic
uncertainty of the resulting energy spectra as a function of the response function uncertainty.

1. Introduction

In space physics, quantities such as particle flux, and the phase space density are important to determine the state
of the magnetosphere (e.g Fennell et al., 2015; Boyd et al., 2018). The calculation of particle flux from an instrument
requires thorough knowledge of the instrument response and its calibration. Since calibration in the lab cannot fully
replicate the plasma environment in the magnetosphere, modeling must be done to further understand the instrument
response. Analytic models (e.g Sullivan, 1971; Thomas and Willis, 1972) can characterize the instrument response for
simple geometries and no particle scattering, but Monte Carlo simulations are required to capture the complexities of
real instruments. One such modeling framework is Geant4 (Agostinelli et al., 2003) which has been used extensively
to model instrument response as a function of particle energy, species, and direction (e.g Spence et al., 2010; Yando
et al., 2011).

Since an instrument convolves the true energy spectra of the incident particle population with the instrument
response, doing the reverse to extract the true spectra from the instrument counts is difficult. The spectra can be
estimated with either a backward model such as the Bow-Tie analysis (Selesnick and Blake, 2000) or a forward model
such as is developed here. The Bow-Tie method is convenient because the count to flux conversion is reduced to a
nominal factor, but this factor is calculated from a specified family of spectra, e.g. a power law,

F = F0E−k, (1)

where k is the power law index, F is the flux, E is the energy, and F0 is the flux magnitude. Since the Bow-Tie
analysis uses specified spectra, the flux conversion is most accurate when the true spectra follows that functional
form. However, it is difficult to quantify uncertainty in the flux from this method which is caused by imperfect
knowledge of instrument response.

Here, we present a forward model using Markov chain Monte Carlo (MCMC) methods. MCMC psudo-randomly
samples a spectral model with the observations, to construct the most likely distributions of the parameters (posteriors)
given assumed initial distributions (priors). This model assumes an exponential spectra, and samples the realistic range
of spectral parameters with a MCMC sampler to calculate the distribution of spectra parameters that are consistent with
the observed counts. A major advantage of this model is that it allows statistical and response function uncertainties to
be incorporated and propagated through to the uncertainty in the spectra parameters. For real instruments, systematic
uncertainty can arise from a combination of sources including, simplified model geometry, temperature-dependent
fields, fringe fields, detector efficiency, and angular response. For simplicity, here the overall response function
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uncertainty was combined into one parameter to quantitatively show how uncertain the spectra becomes as a function
of this one instrument uncertainty.

2. Method and Results

To demonstrate the technique in a more concrete manner we explore the impact of systematic uncertainty utilizing
the response functions of the Magnetic Electron Ion Spectrometer (MagEIS; Blake et al. (2013)) low energy instru-
ment. MagEIS measures electrons and ions as a part of NASA’s Van Allen Probes mission which launched in 2012
(Mauk et al., 2013; Spence et al., 2013). The MagEIS-Low instrument is sensitive to 20 − 210 keV electrons. Figure
1a shows a diagram of MagEIS which consists of a chamber with an internal magnetic field which guides electrons
towards a row of solid state detectors, where they are recorded. The MagEIS response functions were developed by
Mark Looper with Geant4 and are shown in Fig. 1b.

To investigate the energy spectra parameter uncertainty an exponential energy spectra is assumed,

J = J0e−E/E0 , (2)

where E is the energy, J is the flux, and J0 and E0 are the two sampled parameters. Simply, the model consists of the
following steps:

1. A “true” spectra is created given a choice of the E0 and J0 parameters. This spectra is then convolved with the
energy channel-dependent response functions to calculate the “true” counts for the perfect case.

2. Poisson sampling is utilized on the perfect counts and used as data input into the MCMC model. Additionally,
the response functions are allowed to move in amplitude and energy cutoff to represent uncertainties in their
determination. E0 and J0 posterior distributions are then computed.

3. Results are compared to the input spectra and widths (uncertainties) in the posterior distributions explored.

Each of these steps is described in detail in the following sections.

2.1. Step 1: Calculate the true count rates
For this simplified model the true count rates were calculated assuming an exponential spectra with E0 = 100 keV 

and J0 = 104 (keV cm2 s sr)−1. The energy-dependent flux was then convolved with the MagEIS response functions 
that are shown in Fig. 1b. This calculation gives us the true (i.e. population) count rates, λ. The sample count rates, 
c were picked from a Poisson distribution with a mean of λ. The observed count rates for this example are shown in 
Fig. 1c as green points.

2.2. Step 2: Sample the posterior distribution with the MCMC model
This work utilized PyMC3 (Salvatier et al., 2016), a MCMC library to pick E0 and J0 to construct a test spectra. 

As before, this spectra was then convolved with the MagEIS response functions. The resulting test count rates, ct were 
compared to the observed count rates. In this model, the MCMC algorithm (e.g. (Metropolis et al., 1953)) sampled the 
posterior distribution 104 times after the burn-in period to assure convergence. The prior distributions on the spectra 
parameters were uninformative broad uniform distributions (U) with E0 ∼ U(1, 500) and J0 ∼ U(1, 106). A few 
example model code snippets are included in the Appendix.

2.3. Step 3: Compare the true spectra to the spectra derived from the posterior distribution
The posterior distributions derived in step 2 demonstrate how well the model compares to the prescribed spectra 

in step 1. After the model run the MCMC posterior distributions are used to calculate the mean count rates, and are 
shown with red points in Fig. 1c. The modeled counts converged to the observed counts, which indicates that this 
model is suitable for this spectra. The modeled spectra are consistent with the prescribed spectra as shown in Fig. 1d 
(Fig. 1e,f show the spectra with systematic uncertainty which is described below).

The true spectra in Fig. 1d is very close to the modeled spectra calculated from the posterior means E0 = 93±5 keV 
and J0 = 10, 500 ± 500 (keV cm2 s sr)−1. The 95% credible interval (CI) of the distributions was found to be 9, 500 < 
J0 < 11, 400 and 84 < E0 < 103. In this framework, the 95% CI is interpreted as “from this one observation, we 
are 95% confident that the true spectra parameters are bounded by the CI”. Since systematic uncertainty was not 
incorporated yet, this CI represents only the statistical uncertainty.
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Figure 1: Simplified model overview. (A) MagEIS cross-section, Figure reproduced from Blake et al. (2013). (B) MagEIS-Low instrument
response functions integrated over angle, provided by Mark Looper. (C) MCMC validation showing that the mean count rates from the posterior
are identical to the observations. (D)-(F) Results from an example run of the simplified model with 10,000 samples after burn-in. The red dashed
curve is the true spectra, while the red solid curve is the spectra derived from the mean of the E0 and J0 posterior distributions. The dashed blue
curves bound the 95% credible interval of the posterior distributions. Panel (D) assumes no systematic uncertainty, and panels (E) and (F) assume
a 50% and 100% response function uncertainty in both energy and amplitude.
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2.3.1. Systematic uncertainty
Incorporating response function uncertainty then allows for the exploration of systematic uncertainties in the

derived spectra. Using the same response functions, the amplitude (gain) and energy cutoffs were varied. This
transformation can be thought of a translation in energy (left/right) and sensitivity (up/down) of response curves in
1b. The amount that each curve was shifted parameterized by the full width at half maximum (FWHM) as a percent
uncertainty. With this methodology, we assume that the total systematic error is captured by the FWHM from all
possible sources. After a FWHM was chosen, the MCMC adjusted the response functions by scaling the amplitudes
and energies by a factor chosen randomly from a normal distribution, N(1,FWHM). Figure 1e, and 1f show an
increasingly wider range of consistent spectra as a function of FWHM.

With this simplified model, we explored how systematic uncertainty compares to statistical uncertainty as a func-
tion of FWHM. This model was run for both energy and amplitude FWHM up to 100% (factor of two uncertainty in
the response functions) and the results are shown in Fig. 2. Fig. 2 shows the ratio of the total CI and the statistical
CI, where the statistical CI was calculated with energy and amplitude FWHM set to 0 %. By design, the relative error
in the lower left corner of both panels in Fig. 2 is 0 since there was no systematic uncertainty. As expected, Fig. 2
shows an increase in the systematic uncertainty as a function of FWHM. A relatively small FWHM uncertainty (e.g.
40%) in both energy and amplitude is enough for the systematic and statistical uncertainties to be equal. This is a
critical result as relatively small systematic uncertainties can significantly contribute to the spectra uncertainty which
is wildly underestimated. Without a full instrument uncertainty quantification, Fig. 2 can give us an idea of how the
overall systematic uncertainty compares to statistical uncertainty.

3. Discussion and conclusions

The systematic uncertainties that are presented in Fig. 2 as a CI ratio present rules of thumb and do not to represent
the details of any particular instrument. It is illustrative to note that this work places bounds on how well one must
understand the calibration in order to account for the uncertainties present.

This model is flexible and it can adapt to different types of response function transformations, as well as a variety
of prior distributions. Besides the uninformative uniform prior, other priors such as N(µ, σ2) has been explored,
with similar results. Since the results in Fig. 2 shows a ratio of the systematic to statistical uncertainty, the choice
of priors should not drastically influence the ratio. In the future, this model can be used on real data to determine
which functional spectra better describes the data. Other spectra models can also include piecewise spectra. Lastly,
this model can include outlier detection which flags data that are statistically unlikely (e.g. outside of the CI range).

One property of the Poisson distribution that biases these results is its asymmetry at low λ. When evaluating
the likelihood the model overestimates the count rates in the low count regimes. Since plasma in the magnetosphere
typically follows falling spectra as a function of energy, this bias hardens the spectra (increase E0) and decrease J0.

To make more informed decisions from the data, one needs to consider uncertainty from imperfect instrument
design, missing physics, edge effects, etc. When the scientist is informed by the data and its uncertainties, he/she can
confidently make claims, and validate models. While this is a simplified model, it is general and flexible enough to
incorporate further systematic uncertainty, and a variety of functional spectra to the uncertainty estimation.
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Figure 2: Ratio of the total uncertainty CI to the statistical CI as a function of amplitude and energy FWHM for E0.
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Appendix A. Model code

This appendix contains example code snippets of the Python MCMC model. The complete code is found at
https://gitlab.com/mshumko/mageis-stats.

This code snippet reproduces the statistical uncertainty MCMC.

m = pm.Model()

def lam(J, E0):

"""

This function appears to the only way to correctly work with pymc3 and

propagate the sampled spectra though the 7 instrument response functions.

"""

lams = 7*[None]

for i in range(len(c_obs)):

lams[i] = pm.Deterministic(

’lam{}’.format(i),

dE*pm.math.dot(J, R.response(R0=R0, Earr=Earr, ch=i))

)

return lams

with m:

# Prior stochastic variables

J0 = pm.Uniform(’J0’, lower=1, upper=1E6)

E0 = pm.Uniform(’E0’, lower=1, upper=500)

# Define an exponential spectra

J = J0*pm.math.exp(-Earr/E0)

lams = lam(J, E0)

c_m = pm.Poisson(’c_m’, mu=lams, observed=c_obs, shape=len(c_obs))

trace = pm.sample(1E4, tuning=2000, cores=3)
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This code snippet reproduces the systematic uncertainty MCMC.

informedPrior = True # use uniform or normal priors on J0 and E0.

# This sets the R(E) scale to unity or normally distributed.

# If False, will not modify the response functions.

Roffset = 50 # R(E) fwhm amplitude offset off if 0 (percent)

Eoffset = 50 # R(E) fwhm energy offset off if 0 (percent)

def getPriors(informedSpecP, Roffset, Eoffset):

"""

This function handles the exponential spectra priors,

and can add uncertainty to the G(E) amplitude and

energy offset.

"""

if informedSpecP:

BoundedNormal = pm.Bound(pm.Normal, lower=0.0)

J0 = BoundedNormal(’J0’, mu=1E4, sd=1E5)

E0 = BoundedNormal(’E0’, mu=100, sd=10)

else:

J0 = pm.Uniform(’J0’, lower=0, upper=1E7)

E0 = pm.Uniform(’E0’, lower=0, upper=500)

# G(E) modifications

if Roffset:

Roff = pm.Normal(’Roff’, mu=1,

sd=Roffset/(100*2*np.sqrt(2*np.log(2))),

shape=len(c_obs))

else:

Roff = np.ones_like(c_obs)

if Eoffset:

Eoff = pm.Normal(’Eoff’, mu=1,

sd=Eoffset/(100*2*np.sqrt(2*np.log(2))),

shape=len(c_obs))

else:

Eoff = np.ones_like(c_obs)

return E0, J0, Roff, Eoff

def lam(E0, J0, Roffset, Eoffset):

"""

This function appears to the only way to correctly work with pymc3 and

propagate the sampled spectra though the instrument response functions.

My implementation of trapezium is not the fastest, but it will do.

"""

lams = len(c_obs)*[None]

for i in range(len(c_obs)):

J = pymcExpSpectra(E*Eoffset[i], E0, J0)

#f is chanel-dependent offset * flux arr * interpolated

# G(E * a random energy offset)

f = Roffset[i]*J*G(E)[i]

lams[i] = pm.Deterministic(’lam{}’.format(i), pymcTrapz(f, E))

return lams

m = pm.Model()

with m:

# Prior stochastic variables
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prior = getPriors(informedPrior, Roffset, Eoffset)

lams = lam(*prior) # Get prior deterministic variables

c_m = pm.Poisson(’c_m’, mu=lams, observed=c_obs, shape=len(c_obs)) # Likelihood

trace = pm.sample(1E4, tuning=10, cores=3) # MCMC
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Abstract

Particle acceleration by CME driven coronal shocks is of great interest to space physics community as the accelerated
energetic particles can have adverse impacts on astronauts and satellites. Therefore, there is an urgent need to under-
stand their origin to try and predict their properties. Computer simulations of the acceleration process is a promising
tool for this purpose. To model realistic particle acceleration, we need data driven shock properties such as its 3-d
geometry, speed and upstream and downstream plasma values such as density, speed and magnetic field. In this study,
we derive these shock properties using MHD simulations of a Gibson-Low (GL) flux rope based CME propagating
in a data driven solar wind background. GL flux rope parameters are constrained using observed CME speed and
poloidal flux. Background solar wind is simulated using radial synoptic magnetogram at the inner boundary. We
use the upstream and downstream plasma parameters to derive shock properties such as compression ratio and Mach
number.

1. Introduction

Solar eruptions are sometimes associated with acceleration of particles like protons, electrons and heavy ions, that
can increase their speeds to near relativistic speed limits (Reames 1999, Desai & Giacalone 2016). These particles are
called Solar Energetic Particles (SEPs) and can follow interplanetary magnetic field lines to reach Earth. Since west-
ern hemisphere of Sun is magnetically connected to Earth due to Parker spiral, events in that region can send SEPs to
Earth (Gopalswamy et al. 2012). There are two main mechanisms for particle acceleration during solar eruptions: (a)
particle acceleration by magnetic reconnection in a solar flare and (b) particle acceleration by coronal shocks traveling
in front of the CME.

Email addresses: talwinder.singh@uah.edu (Talwinder Singh), guofan@lanl.gov (Fan Guo), tmsy0002@uah.edu (Mehmet S.
Yalim), np0002@uah.edu (Nikolai Pogorelov)
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Particle acceleration by coronal shocks is the main focus of this study. The main process of particle acceleration in 
this case is the diffusive shock acceleration in which the particles move across the shock multiple times and gaining 
energy (Axford et al. 1977, Krymsky 1977). This acceleration has been shown to be dependent on the shock geom-
etry, speed and shock upstream and downstream plasma parameters. The most important ones are the compression 
ratio of the shock and the angle between shock normal and upstream magnetic field vector. Perpendicular shock are 
more suitable for particle acceleration (Jokipii 1987). The other parameter that greatly impacts the SEP event flux is 
the presence of seed particles for shock to accelerate (Kahler et al. 2000). Most of the high energy SEPs originate 
when shock is below 4 R�. It has also been observed that more energetic SEP events were associated with multiple 
CMEs interacting in corona indicating the plasma in leading CME is providing seed particles to shock of the trailing 
CME’s shock (Gopalswamy et al. 2004, Li et al. 2012).
Kong et. al. (2017) simulated particle acceleration by assuming an analytic circular front shock and simplified 
streamer belt and radial configuration of coronal magnetic field. They found that the coronal magnetic field config-
uration plays an important role in the acceleration process. In this study, we aim at deriving shock properties and 
coronal magnetic field configuration from data so that a more realistic data driven study can be done. Section 2 shows 
the models for solar wind background and CME used in this study. In section 3, we show how model parameters can 
be constrained by observations. Section 4 shows the simulations results and finally concluding remarks are given in 
section 5.

2. Models

2.1. Global Solar Corona Model

A global MHD model of solar corona has been developed in Multi-Scale Fluid-Kinetic Simulation Suite (MS-
FLUKSS, Pogorelov et al 2014, Yalim et al. 2017) (See Fig 1). This model is designed to be driven by a variety 
of observational solar magnetogram data. It solves the set of ideal MHD equations in inertial or corotating frame of 
reference with the Sun using volumetric heating source terms to model solar wind acceleration according to Nakamizo 
et al.(2009). This results in simulation of various solar magnetic structures such as streamers and coronal holes. 
The initial solution for magnetic field is calculated by Potential Field Source Surface (PFSS) method using either 
a spherical harmonics approach or a finite difference method by incorporating the solution provided by the Finite 
Difference Iterative Potential-field Solver(FDIPS) code (Toth et al. 2011) into MS-FLUKSS. For the rest of the 
plasma parameters, the initial solution is computed from Parker’s isothermal solar wind model (Parker 1958).
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Figure 1: Solar wind background simulated using HMI LOS magnetogram of 7 March 2011 06:00 UT: (left) speed contours (km/s); (right)
temperature contours (K).

2.2. Gibson Low flux rope model

Since CMEs have flux rope structure associated with them that drives the bulk plasma motion away from the Sun,
we chose to use a flux rope based CME model called Gibson-Low (FL) flux rope model in this study (Gibson &
Low 1998). This should result in more realistic CME parameters and by extension, more realistic shock parameters.
Solution to GL flux rope is found by solving the force balance equation and Gauss’s law for magnetism using Ideal
MHD equations. This results in an analytical solution of spherical magnetic torus that can be stretched under the
transformation r = r − a in spherical coordinates to convert it into a tear drop shape (Fig 2). The analytical solution
of GL flux rope requires four parameters:

• Flux rope radius(r0): This is the radius of initial GL spherical torus before stretching.

• Flux rope height (r1): This is the height of the center of the introduced spherical torus before stretching.

• Flux rope stretching parameter (a): This is the amount by which each part of the spherical torus is stretched
towards the origin.

• Flux rope field strength (a1): This is a free parameters that controls the magnetic field strength and pressure
inside the flux rope being introduced.

As seen in fig. 2, the magnetic field lines imitate the flux rope in a CME and the mass is distributed like the typical 
3 part structure of the CME, with bright front, dark cavity that contains flux rope and a bright core. To simulate 
a CME, the analytic solution of the flux rope is superimposed on the background solar wind. Due to unbalance in 
pressure with the background, the flux rope erupts as a CME.
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Figure 2: (From left to right) Density (g/cm3), magnetic field magnitude (G), and magnetic filed lines in stretched GL torus. All horizontal and
vertical axis are in R�. We used r0 = 1.67, r1 = 3.03, a = 1.01 and a1 = 0.23 in these figures. (0,0) coordinate represents solar center.

3. Deriving parameters

To have realistic shock parameters, we need to simulate the solar wind background as well as the CME to match
observations. Using synoptic magnetograms and volumetric expansion terms given in Nakamizo et. al. (2009), we
get a background that matches observations in key coronal structures like active regions, coronal holes and streamers.
To match the CME with observations we need to properly adjust the GL flux rope parameters. The key observations
of the CME to match with simulation are its speed, direction, tilt and poloidal flux.
We have used Graduated Cylindrical Shell (GCS) model to derive CME speed, direction and tilt angle using multiple
viewpoints of STEREO A, B Cor-2 and SOHO C3 coronagraphs (Thernisien et. al. 2006). GCS model consists of
two conical legs and a circular front and can be adjusted in height, latitude, longitude, tilt, half angle and filling ratio
to fit on a CME as seen from multiple viewpoints (See fig. 3). Doing this for a time series and finding height-time
relation can give us the CME speed.
Poloidal flux of a CME cannot be calculated directly through coronagraph observations. Therefore we use an empirical
relation given by Gopalswamy at al (2017) stating that the poloidal flux of a CME is equal to the reconnected flux
in the source active region after the CME eruption. Reconnected flux can be calculated as half the unsigned radial
flux in the magnetogram area covered by the Post Eruption Arcades (PEAs) (See fig. 4). While using this method,
we need to restrict ourselves to CMEs that erupt from active regions within 30o latitude and logitude as otherwise the
projection effect introduces errors in flux estimation.
To simulate a CME, a GL flux rope analytic solution is added to the background with GCS calculated location and
tilt. The GL parameters required by the analytic solution are constrained using observed speed and poloidal flux of
the CME. Singh et. al. (2018) found an empirical relation between speed of simulated CME, average background
pressure in simulated solar wind and GL parameters. It can be given as:

VCME =

(c1a1r4
0 + c2) · (c3Pavg + c4) · (c5r1 + c6) r1 < 2.6

(c1a1r4
0 + c2) · (c3Pavg + c4) r1 ≥ 2.6

(1)

where VCME is the simulated speed of the CME, Pavg is the average solar wind pressure in the direction of CME 
propagation and r1, r0, a and a1 are GL parameters. ci’s are constants found using a parametric study in Singh et. al.

(2018). Using this relation, the speed of simulated CME can be found for every combination of GL parameters. We 
can also find poloidal flux of GL flux rope from its analytical solution. To find GL parameters to be used, we vary the
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GL parameters in a range and find the combination of GL parameters that match simulated speed and poloidal flux of
CME with the observed values.

Figure 3: Graduate Cylindrical Shell (GCS) model applied to a CME observed by 2 viewpoints of STEREO A (left) and B (right). This model can
be used to find CME speed, direction and tilt angle.

Figure 4: (left) Post eruption arcade (PEA) seen after the CME eruption in 193 Ȧ wavelength EUVI imager onboard SDO (right) Same active
region as seen in HMI magnetogram onboard SDO overplotted by the PEA area.

4. Simulation Results

In this study, we use a CME that occurred on 7 March 2011 at 14:00 and was Earth directed. It was clearly seen by 
STEREO A & B and therefore, GCS method could be easily implemented on it. Also, the source active region AR-
11166 was within ±30o latitude and longitude thus reducing the error in magnetic flux calculation from magnetogram. 
We use CR-2107 synoptic magnetogram to simulate solar wind background as shown in fig. 1. We use spherical 
domain with resolution of 180 × 120 × 240 in r, θ and φ with r ranging from 1.03 R� to 30 R�.
We measured the CME speed as 812 Km/s and direction as −24o longitude and +18o latitude using GCS method. The 
tilt of the CME was found to be +85o w.r.t. solar equator. The flux from post eruption arcade area as 4.85x1021 Mx. 
For these values, we found that using a1, r0, r1 and a as 2.51, 0.52, 1.34 and 0.14 respectively should simulate CME 
with speed 907 Km/s and poloidal flux 4.90x1021 Mx. With these parameters, the introduced GL mass is 3.84x1015
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gm which is of the order of typical mass of a CME. These GL parameters ended up simulating a CME with speed 897
Km/s, which is very close to the actual speed. Figs. 5 shows the white light coronagraph image of observed CME
compared with synthetic white light image of simulated CME from same viewpoint. Fig. 6 shows the agreement
between the height vs. time graphs obtained from the LASCO/C3 observations and the simulation results. This
agreement shows the possibility of predicting CME arrival time at 1AU using simulations.
Now that we have data driven CME simulation that matches well with the observations, we find the shock travelling
in front of this CME and its properties. We are interested in finding the 3D shape, speed, compression ratio and mach
number of the shock. The shock location in front of the CME can be located by the position of pressure jump along
radial lines in multiple directions. The normal at each point on Shock is calculated by v-B coplanarity condition
(Abraham-Shrauner 1972).

n̂ =
B1 × (V2 − V1) × (B2 − B1)
|B1 × (V2 − V1) × (B2 − B1)|

where B and V are magnetic field and velocity vectors and “1” and “2” subscripts indicate whether parameters are
ahead or behind the shock. Speed of the shock can be found by finding the shock location along the normal direction
at a later time. Then for each direction, we go to coordinate system in which the shock is stationary to find compres-
sion ratio. Magnetosonic mach number is found as ratio of shock speed in solar wind frame of reference and local
magnetosonic wave speed. Figure. 7 shows the shock shape colored according to compression ratio, mach. number
and shock speed at each point. Shock normal unit vectors are also shown for each point. Since this was a relatively
slower CME with speed 900 Km/s, we see a small compression ratio in the shock. In the future, we will simulate a
faster CME that occured on 12 July 2012 with the discussed method and see its impact on shock properties. That event
was associated with SEP detection at 1 AU so it will be more suitable to do diffusive shock acceleration simulations
to model SEP generation.

Figure 5: (left) 7 March 2011 CME observed by STEREO A Cor 2 coronagraph (right) Same CME simulated using GL flux rope shown by
synthetic white light image.
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Figure 6: Height-Time graph showing agreement in time evolution of simulated and observed CMEs

Figure 7: (From left to right) Compression Ratio, Mach number, and shock speed for the shock traveling in front of the simulated CME. The arrows
in all 3 subpanels show the shock normal unit vector.

5. Conclusions

In this study, we have shown how to derive properties of coronal shocks using data driven MHD CME simula-
tions. We simulated a CME that occurred on 7 March 2011 in a data driven solar wind background. We adjusted our
model parameters such that simulated CME matches observations in speed, direction, tilt and poloidal flux. The shock
traveling in front of the CME was identified by finding location of pressure jump and shock normal at each point on
shock was found using v-B coplanarity condition. The shock speed, compression ration and mach number were also
found.
This approach can be used to model particle acceleration by this shock by using diffusive shock acceleration simula-
tions similar to Kong et. al. (2017). It will give is useful insight into the exact mechanism and location of particle
acceleration in the corona.
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Abstract

The magnetosphere e↵ectively shields low latitudes from most energetic protons. This shielding is dependent upon
both the energy and angle of arrival of protons, and the latitude at which a particular energy of proton cannot reach
is referred to as the cuto↵ latitude. The newly available Global Positioning System (GPS) energetic particle data
presents an exciting opportunity to study solar energetic particle (SEP) events and cuto↵ latitude. With more than 20
satellites in 6 orbital planes at MEO covering a wide range of L-shells for a 16 year period (over 190 satellite years),
this data set covers a longer time span and greater spatial distribution than most science missions. We present a study
of geomagnetic cuto↵ evaluated with energetic proton measurements from the Combined X-ray and Dosimeter (CXD)
instruments onboard the GPS satellites. At a four minute cadence, the CXD instrument detects protons with energies
ranging from 10 MeV to >100 MeV on five channels and have been recently cross-calibrated with the NOAA GOES
Energetic Particle Sensor. Cuto↵ latitude can be defined in multiple ways, and we investigate previously used and
novel methods of cuto↵ determination from data. For several SEP events we calculate the GPS observed cuto↵ using
di↵erent heuristics and compare to previous studies of cuto↵ variation during these events. We further compare the
GPS-derived cuto↵ latitudes to modeled cuto↵s.

Keywords: geomagnetic cuto↵, solar energetic particles, GPS

1. Introduction

1.1. Global Positioning System (GPS) as a particle detector
On October 29, 2015, the National Space Weather Strategy and National Space Weather Action Plan was released

by the White House O�ce of Science and Technology. This document instructed federal agencies to make space
environment data from the US Air Force’s GPS satellites publicly available. Next, in January 2016 the National
Oceanic and Atmospheric Administration (NOAA) hosted 4 weeks of GPS energetic particle data from Los Alamos
National Lab’s (LANL’s) sensors, and this was the first time the public could access this data. On August 4, 2016,
Knipp and Giles (2016) called for a release of more of the GPS data: “[N]ow is the time for a new data revolution
that makes months, if not years, of historical GPS space environment data available to those who support the nation’s
space industry.” Finally, on October 13, 2016, under Executive Order 13744 “Coordinating E↵orts to Prepare the
Nation for Space Weather Events”, 16 years of LANL’s GPS energetic particle data was released. This historic data
set covers December 2000 to December 2016 (Morley et al., 2017).

All GPS satellites are equipped with instruments that measure a wide range of energetic electrons and protons.
The Combined X-ray and Dosimeter (CXD) resides on 21 of 31 of the currently operating spacecraft. The Burst
Detector Dosimeter for Block II-R (BDD-IIR) resides on 2 currently operating spacecraft. Through using GPS data,
we have a data set with a longer time span and greater spatial distribution than previous science missions. With CXD,

Email addresses: alexandra.wold@colorado.edu (Alexandra M. Wold), mrcarver@lanl.gov (Matthew R. Carver),
smorley@lanl.gov (Steven K. Morley)
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we have 16 years of data (over 190 satellite years) from the GPS satellites. Figure 1 shows the daily sunspot number
versus time with the lifetimes of various missions overlayed. In red, we see CXD equipped satellites covering more
than an entire solar cycle. Compared to the Van Allen Probes in blue, GPS cover a much larger time range. GPS
have ⇠ 12 hour orbits, and the CXD measurements are made at a 4 min cadence. The GPS constellation covers six
orbital planes in mid-Earth orbit (MEO) at approximately 20,200 km altitude. GPS have a nearly circular orbit and fly
through a wide range of L-shells. A visualization of the GPS distribution is shown in Figure 2. Compared to GOES,
the science standard for space environment monitoring from geostationary orbit, we can visually see the increase in
spatial distribution of GPS measurement from sheer number of satellites alone. With this large spatial distribution, fast
cadence, and muti-year coverage, there are exciting opportunities to study the geospace environment (Morley et al.,
2016, 2017; Carver et al., 2018).

Figure 1: Plot from Carver et al. (2018) illustrating the time coverage of spacecraft
from 2000 to 2017. In black, dialy sunspot number vs. time. In red, time coverage
of CXD-equipped GPS satellites. In blue, time coverage of National Aeronautics
and Space Administration Van Allen probes, (purple) time coverage of Geostationary
Operational Environmental Satellite Energetic Particle Sensor (GOES EPS).

Figure 2: A visualization from Morley et al. (2016)
of the spatial distribution of CXDequipped GPS satel-
lites in geocentric solar ecliptic (GSE) coordinates. The
satellite names mark their positions at midnight on 17
March 2015 with a colored trail showing their path over
the previous 12 hours.

Figure 3: Energetic Particle Sensors on CXD. LEP:
Low Energy Particle subsystem has 5 electron channels.
HXP: High-energy X-ray and Particle subsystem has 7
electron channels. Eleven electron channels on 19 block
IIR and IIF satellites.

We focus on CXD as the primary data source for this project.
CXD measures proton energies ranging from 6 MeV to >75 MeV
on five di↵erent channels. The data product includes di↵erential
omnidirectional fluxes, integral fluxes, count rates, geomagnetic
parameters from several magnetic field models including L-shell,
and more (Morley et al., 2016). Figure 3 shows a photo of the
instrument with the Low Energy Particle (LEP) and High-energy
X-ray and Particle (HXP) sensors labeled, the two detectors used
for energetic electron and proton sensing.

Before studies utilizing the GPS proton data could be per-
formed, the data needed to be proven reliable. Carver et al. (2018)
presented a cross calibration of CXD with the Energetic Particle
Sensor (EPS) onboard GOES. Figure 4 shows the log scaled in-
tegral flux measured by EPS versus the same measured by CXD
for four di↵erent energy thresholds. The black dotted line rep-
resents where the data would follow if the two instruments were
perfectly matched in what they measured. The green solid lines
show the actual fit of the cross callibration. For proton ener-
gies >30 MeV, CXD fluxes are within 20% of EPS. For proton
energies >10 MeV, CXD fluxes are within 40% of EPS. With
this validation of the GPS proton data, GPS can be used reliably to study SEP events, geomagnetic 
shield-
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ing/access, and galactic cosmic rays. For this project, we focused on geomagnetic access during SEP events.

1.2. Solar Energetic Particle Events and Geomagnetic Cuto↵

Figure 4: Plot from Carver et al. (2018) of GOES-11 and GOES-13 EPS versus GPS CXD
integral proton fluxes >10 MeV (top left), >30 MeV (top right), >60 MeV (bottom left),
and > 100 MeV (bottom right) protons. A y = x line (dotted black) represents perfect
correlation, and a TheilSen line of best fit (solid green) shows the actual fit.

Solar energetic particle (SEP) events
are the most variable source of en-
ergetic protons in the near-Earth en-
vironment in time, energy, and flux,
(compared to the more constant Galac-
tic Cosmic Ray flux) and cause a va-
riety of space weather e↵ects (Carver
et al., 2018). SEP events are caused
when flares or coronal mass ejec-
tions accelerate particles to relativis-
tic speeds, which travel along mag-
netic field lines. SEPs can arrive at
the Earth from the Sun in an hour or
less and may have damaging e↵ects on
spacecraft including ionizing and non-
ionizing dose as well as single event
e↵ects.

The magnetosphere e↵ectively shields
low latitudes from most energetic pro-
tons. SEPs can access high latitudes
in the magnetosphere and pose radia-
tion dangers to high latitude aviation
and high inclination LEO satellites.
Most LEO spacecraft that do not tra-
verse the polar region are not a↵ected
by the SEPs that access the magneto-
sphere, as the protons do not penetrate
low enough. However, geomagnetic
storms reconfigure the Earth’s mag-

netic field, and allow the energetic protons to access lower latitudes than typical, increasing radiation exposure signif-
icantly compared to quiet conditions (Leske et al., 2001).

We call this latitude that the SEPs can reach the cuto↵ latitude. Depending on the energy and angle, particles 
cannot penetrate below their cuto↵ latitude. Suppression of the cuto↵ latitude has been observed by multiple missions 
during SEP events. We need to investigate di↵erent cuto↵ determination methods, as previous studies estimate the 
cuto↵ latitude from data from spacecraft with di↵erences in pointing, incident angles, orbit altitude, and inclination 
than GPS. Essentially, the GPS CXD instrument is measuring a di↵erent population of the SEPs at di↵erent arrival 
angles.

Leske et al. (2001) estimated cuto↵ from data from the polar-orbiting Solar, Anomalous, and Magnetospheric 
Particle Explorer (SAMPEX) satellite during SEP events from 1992 to 1998. They found that cuto↵ latitude correlated 
well with both Kp and Dst, with cuto↵ latitude decreasing as storm activity increased, shown and discussed later in 
Figure 7. They measured typical suppression of the cuto↵ latitude between 5 and 10 degrees, with suppression as large 
as 15 degrees also measured. Rodger et al. (2006) also utilized SAMPEX, and determined the Kp dependent rigidity 
cuto↵ energies during a 4-10 November 2001 SEP event. Nesse Tyssøy et al. (2013) evaluated the cuto↵ latitude 
during a January 2012 SEP event using data from the POES 16-19 and METOP02 satellites. All of these studies saw 
a good correlation between geomagnetic activity and cuto↵ suppression.
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2. Methodology

Our approach to studying GPS measured cuto↵ latitude started with selecting SEP events in Section 2.1. Next, we
determined the GPS measured cuto↵ with two definitions in Section 2.2. After, we compared to geomagnetic activity
in Section 2.3 and previous spacecraft measurements in Section 2.4. Finally, we began a comparison to an analytic
model in Section 2.5.

2.1. Selection of SEP events
The SEP intervals selected for this study are the same as used by Carver et al. (2018) to perform the GPS/GOES

cross calibration. These four events provide a good variation in peak fluxes and temporal evolution. After the initial
introduction here, each period will be referred to only by month and year. Each of the following descriptions follow
those provided in Carver et al. (2018).

Figure 5: Integral proton flux versus time from Carver et al. (2018) for December 5-15,
2006 (a), January 22-31, 2012 (b), March 4-16, 2012 (c), and January 6-14, 2014 (d).
GOES-11 and GOES-13 EPS 1 min average fluxes are shown as colored dotted lines for
>10, >30, >60, and >100 MeV, while fluxes from all available CXD instruments are shown
in black on 20 min averages.

The first SEP interval is December
5-15, 2006 (Figure 5A). This event has
three intensifications, a gradual flux in-
crease from an X-class flare followed
by a prompt increase from a halo CME
and an increase from a second halo.
This event provides both variation in
onset (gradual and prompt), as well
as di↵erent acceleration mechanisms
(flare and CMEs). 7 CXD instruments
were operational to measure this event.

The second SEP interval is January
22-31, 2012 (Figure 5B). During this
time, 2 SEP events occurred. A prompt
onset from a CME is followed by a
prompt onset from an X-class flare.
This pair of SEPs disrupted commer-
cial aviation and atmospheric compo-
sition. It was observed by 11 CXD in-
struments.

The third SEP interval is March 4-
16, 2012 (Figure 5C). There was a mi-
nor enhancement which was not con-
sidered an SEP by NOAA’s definition.
This was followed by two rapid onset
SEPs, and was measured by 11 CXD
instruments.

The fourth SEP interval is Jan-
uary 6-14, 2014 (Figure 5D). The first
SEP in this interval was small with a
prompt onset, and the second SEP had
a more gradual onset. This interval
was measured by 13 CXD instruments.

2.2. Determine GPS measured cuto↵
In data, cuto↵ latitude can be esti-

mated as where the proton flux drops
below half the average flux above 70 degrees. Leske et al. (2001) used this method when determining the cuto↵ 
latitude from SAMPEX proton flux measurements. In Figure 6 from Leske et al. (2001), the 20-29 MeV proton 
counts per second measured by SAMPEX Proton/Electron Telescope (PET) are plotted versus latitude. We can see
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a relatively constant count rate of about 800 counts per second from 70 degrees and above. The latitude where the
count rate halves (400 counts per second) is approximately 65 degrees. Thus the cuto↵ latitude for this time period (1
Nov. 1992, 6:35-6:52) is 65 degrees by this determination method. After repeating this determination, a time series
of cuto↵ latitudes is created, shown in Figure 7 from Leske et al. (2001) as the squared markers. The cuto↵ points are
overlaid with the Dst (solid black line), showing the correlation between cuto↵ latitude suppression and geomagnetic
activity.

Figure 6: From Leske et al. (2001), the rate
of ⇠ 20-29 MeV protons from SAMPEX
PET measured every 6 seconds versus lat-
itude for a single pass through the northern
polar region.

Figure 7: From Leske et al. (2001), the orbit averaged cuto↵
latitude (left scale, dotted) versus time compared to the geo-
magnetic activity index Dst (right scale, solid).

We started with this technique of defining cuto↵ as the location where flux is reduced by half from an average
flux above some latitude. Figure 8 shows proton flux versus latitude for a single GPS satellite over a 6 hour period.
We have a similar profile of constant flux above some latitude followed by a sharp decrease as the flux hits the cuto↵.
Note that the drop only appears more gradual than that in Figure 6 because we are now plotting di↵erential flux on a
log scale instead of linear. Instead of using the average above 70 degrees as our reference, we used 65 degrees since
the GPS foot-point latitude is not often above 70 degrees. This determination method illustrated the capability to
determine cuto↵ latitude from GPS measurements. We then investigated how to determine the cuto↵ L-shell.

Figure 8: Log scaled di↵erential flux for six proton energies vs. footpoint latitude from one GPS spacecraft (SVN 53) on Jan. 23rd from 06:00 -
12:00 UT.

To determine the geomagnetic cuto↵ L-shell from the GPS data, we binned all fluxes over 1 hour time periods and
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Figure 9: Dec. 2006 normalized proton flux plotted with respect to L-shell versus time. The cuto↵ is located along the white region separating the
dominantly blue and red regions.

Figure 10: Jan. 2012 normalized proton flux plotted with respect to L-shell versus time. The cuto↵ is located along the white region separating the 
dominantly blue and red regions.

0.1 L-shell bins. For each time period, we normalized by the maximum flux in that bin so that values ranged from 0 
(minimum flux) to 1 (maximum flux). Cuto↵ L-shell was then defined as the latitude where the normalized flux was 
closest to 0.5 (half of maximum flux). In Figures 9-12, we can see an evolution in the cuto↵ that changes with time. In 
Section 2.3, we compare the Jan. 2012 event to the Kp and Dst, two di↵erent geomagnetic storm indices. In Section 
2.4, we compare the Jan. 2012 event with cuto↵ measured by Nesse Tyssøy et al. (2013) from NOAA/POES 16–19 
and METOP02 data.

2.3. Compare to geomagnetic storm indices
We compare the GPS determined cuto↵ L-Shell to the Planetary K-index (Kp) and the Disturbance Storm Time 

Index (Dst) to show the correlation between cuto↵ suppression and geomagnetic storms. Kp is a three hour index that 
characterizes geomagnetic activity from 0 to 9 with 0 being the lowest amount of activity adn 9 being the highest. 
The Kp index is deterived from ground-based magnetometer data. Dst is derived from near-equatorial geomagnetic 
observatories that measure the ring current.

As shown by Leske et al. (2001), the cuto↵ latitude is well correlated to the the Kp index and the Dst index (Figure 
7). For the Jan. 2012 event, Figures 13 and 14 show the GPS determined cuto↵ L-shell (blue) compared to the 
Kp index and the Dst index (red). Since Kp scales from 0 to 9 with increasing geomagnetic activity, it is plotted as
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Figure 11: Mar. 2012 normalized proton flux plotted with respect to L-shell versus time. The cuto↵ is located along the white region separating
the dominantly blue and red regions.

Figure 12: Jan. 2014 normalized proton flux plotted with respect to L-shell versus time. The cuto↵ is located along the white region separating the
dominantly blue and red regions.
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(�1 ⇥ Kp) to better show that the cuto↵ location decreases as Kp increases. Since the Dst decreases with increasing
geomagnetic activity, we did not have to adjust this scale.

Figure 13: For the Jan. 2012 SEP event: cuto↵ L-shell in blue on the left axis; (�1 ⇥ Kp) in red on the right axis.

Figure 14: For the Jan. 2012 SEP event: cuto↵ L-shell in blue on the left axis; Dst in red on the right axis.

2.4. Compare to other spacecraft measurements
We qualitatively compare our temporal cuto↵ evolution for the part January 2014 SEP interval (23rd-26th) with 

cuto↵ calculation from the same period determined from NOAA/POES 16-19 and METOP02 data by Nesse Tyssøy 
et al. (2013). In Figure 15, we see the GPS cuto↵ L-shell on the top plot and the POES/METOP02 cuto↵ latitude on 
the bottom plot. Boxed in pink on both plots, we see an initial rise and suppression of the cuto↵ from the 23rd-24th 
of the month. Next, in the orange boxes, we see a sharper increase and decrease in cuto↵ location on the 24th. In 
the yellow box, we see another increase followed by the sharpest cuto↵ suppression occurring on the 25th. Finally, in 
the green boxes, we see the cuto↵ position recovering after the intense geomagnetic suppression. The GPS measured 
cuto↵ correlation with the cuto↵ determined by Nesse Tyssøy et al. (2013) provides an initial validation our cuto↵ 
determination method.

2.5. Compare to models
The first geomagnetic cuto↵ model we assess is the pure dipole field the cuto↵ rigidity (momentum per charge of 

a particle), expressed analytically as:
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Figure 15: Correlation between GPS determined cuto↵ (top) and cuto↵ determined by Nesse Tyssøy et al. (2013) from NOAA/POES 16–19 and
METOP02 data (bottom). Matching colored boxes highlight matching trends in the cuto↵ evolution through time for both plots.

Rs = CS t
1
L2

1

(1 +
p
1 + cos↵ cos �3)2

(1)

where L = r cos2 � is the dipole L-shell, � is the magnetic latitude, ↵ is the angle between the particle arrival direction
and magnetic west, and CS t  = 60 is a constant containing the dipole moment (8.06 ⇥ 1025 Gauss cm3) and the 
conversion factors necessary to express Rs in units of GV (Störmer, 1955; Kress et al., 2015). Rs is plotted versus
latitude and L-shell in Figures 16 and 17 for ↵ = 0 and ↵ = ⇡ to show the minimum and maximum boundaries. As we 
decrease in latitude or L-shell, we see an increase in rigidity. Particles need higher rigidities to access lower latitudes.

Cuto↵ rigidity as the minimum rigidity a particle must possess to penetrate to a given geomagnetic latitude. Each 
cuto↵ latitude has a corresponding cuto↵ rigidity. Rigidity is a property of a particle defined as the momentum per unit 
charge. To compare this model of cuto↵ rigidity to our data, we obtained rigidity to energy conversions for protons 
from https://ccmc.gsfc.nasa.gov/pub/modelweb/cosmic rays/cuto↵ rigidity sw/rpt-6.doc. This is an implementation 
of the Smart and Shea rigidity to energy conversion. In Figure 18, we show the cuto↵ L-shell as a function of proton 
energy. We see that cuto↵ latitude decreases as proton energy increases.

Figure 18 also compares the cuto↵ L-shells we computed for the di↵erent energy channels to this model. The 
yellow points are the mean cuto↵ L-shell for the Jan. 2012 period at 10 MeV, 19.95 MeV, 31.62 MeV, 50.12 MeV,
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and 63.10 MeV. There is a slight decrease in cuto↵ L-Shell with increaseing energy, but it is not well matched to
the analytic model. This model makes several simplifications that account for some of the di↵erences from the GPS
determined cuto↵. Most importantly, it assumes a simple dipole magnetic field and it does not include the e↵ects of
geomagnetic activity. We discuss models for future comparison in Section 3.

Figure 16: Modeled rigidity vs. cuto↵ latitude for ↵ = 0 (blue) and ↵ =
⇡ (green), where ↵ is the angle between the particle arrival direction
and magnetic west.

Figure 17: Modeled rigidity vs. cuto↵ L-shellfor ↵ = 0 (blue) and ↵ =
⇡ (green), where ↵ is the angle between the particle arrival direction
and magnetic west.

Figure 18: Modeled cuto↵ L-shell vs. proton energy for ↵ = 0 (blue) and ↵ = ⇡ (green), where ↵ is the angle between the particle arrival direction
and magnetic west. The mean cuto↵ L-Shell for the Jan. 2012 SEP event is shown in yellow for proton energies of 10 MeV, 19.95 MeV, 31.62
MeV, 50.12 MeV, and 63.10 MeV.

3. Conclusions & Future Work

The availability of the GPS particle detector data presents many opportunities for exploring physical phenomena 
of the geospace environment with better spatial distribution and longer temporal coverage than any previous science 
missions have achieved. In this report, we presented a first investigation into the ability of GPS proton measurements 
to be utilized to determine geomagnetic cuto↵. We successfully determined cuto↵ L-shell locations during four SEP 
events. For the January 2012 event, we showed the correlation between cuto↵ suppression and geomagnetic activity
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and performed a preliminary comparison to an analytic cuto↵ model. The next step in this project will be to utilize
particle tracing codes to obtain an empirical model of cuto↵ with a more realistic field model.
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Abstract

The solar wind provides insights into the fundamental kinetic processes that occur in collisionless plasmas. One of
the outstanding problems is how turbulent fluctuations dissipate into heat at small scales. At ion-kinetic scales, these
fluctuations exhibit characteristics that are consistent with the properties of linear plasma waves such as polarisation,
frequency and wavenumber, making wave-particle interactions viable dissipation mechanisms in the place of colli-
sions. However, directly observing these heating processes is difficult due to the nature of in-situ spacecraft data.
Conversely, present-day computational resources allow for three-dimensional high-resolution hybrid plasma simula-
tions that can help us to understand turbulent dissipation without the restriction of single-point measurements. We
analyse data from a 3D hybrid simulation to show that a coherent signature in the magnetic helicity spectrum asso-
ciated with circularly-polarised fluctuations is associated with a steepening in the power spectrum of magnetic field
fluctuations at scales kdi∼1, as found by Woodham et al. (2018) using in-situ solar wind data. These results are con-
sistent with wave-particle interactions between the ions and the wave-like fluctuations at these scales. Further work is
ongoing to characterise the nature of these fluctuations and their importance regarding heating of the plasma.

Keywords: plasma, turbulence, hybrid simulations, dissipation, waves, kinetic physics

1. Introduction

Collisionless astrophysical plasmas are ubiquitous across the Universe. An example is the solar wind, a supersonic
and super-Alfvénic outflow of plasma from the solar corona. The plasma flow carries with it the interplanetary
magnetic field which permeates the entire heliosphere. The bulk properties of the solar wind are highly variable,
with large changes in speed that form a bimodal distribution leading to the classification of two types of flow: highly
variable slow wind at about 300 km/s, and less variable fast wind at about 600 km/s. While fast wind is typically
associated with the outflow from coronal holes, the origins of the slow wind are still poorly understood, although
slow wind streams often originate from areas of the Sun associated with active regions (Schwenn, 1990; Habbal et al.,
1997).

Both the plasma moments (such as the density and velocity) and electromagnetic fields show fluctuations over a
wide range of scales - at the largest scales, the magnetic field is frozen-in to the plasma, and together they act like
a magnetofluid. This fluid exhibits turbulent fluctuations, driving a continual cascade of energy from large scales
(∼106 km) towards smaller scales of the order of the electron gyroradius (∼101 km) (Goldstein et al., 1995; Tu and
Marsch, 1995; Bruno and Carbone, 2013). The plasma can no longer behave as a fluid at scales of the order of
the proton inertial length or gyroradius (∼102 km) or smaller. At these so-called ion-kinetic scales, the plasma and
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electromagnetic field fluctuations can interact directly with the proton velocity distribution, and the kinetic motions
of plasma begin to dominate leading to the dissipation of energy from the fluctuations, heating the particles directly
(Kiyani et al., 2015; Chen, 2016). At the same time, kinetic effects can lead to the generation of waves and instabilities
that can extract free energy from the particle velocity distribution functions (Alexandrova et al., 2013).

This interplay of the continuous flow of energy between the particles and fields is made even more complicated
by the relative lack of collisions in the solar wind. Turbulence in a neutral fluid dissipates via collisions, whereas in
the solar wind the collision rate is low. At the same time, we observe heating of the solar wind plasma (Cranmer
et al., 2009) such that it no longer follows the radial profile as described by adiabatic expansion (cooling) (Marsch
et al., 1982; Richardson et al., 1995). The fluctuations at ion-kinetic scales exhibit specific characteristics that are
consistent with the polarisation properties of linear plasma waves (Gary, 1986), making wave-particle interactions
viable dissipation mechanisms in the place of collisions (Marsch, 2006, 2012). Understanding these physical processes
is essential for our understanding of how energy and momentum flow in collisionless astrophysical plasmas.

In-situ spacecraft provide measurements of the solar wind plasma moments and electromagnetic fields - the fluc-
tuations of these variables exhibit power laws over several decades in frequency. At frequencies, f < 0.1 Hz, mag-
netohydrodynamic (MHD) theory adequately describes the turbulent fluctuations, which are predominantly Alfvénic,
where the magnetic field fluctuations show a characteristic Kolmogorov spectrum of f −5/3 (Bruno and Carbone, 2013).
That is, both the magnetic field and bulk velocity fluctuations are dominantly in the perpendicular components with
respect to the background magnetic field and often (anti-)correlate with each other: b = ±u, where u represents the
bulk velocity fluctuations, b = B/

√
4πρ is the fluctuating magnetic field in Alfvén (velocity) units, and ρ is the plasma

density. This part of the spectrum with an exponent of -5/3 is often termed the inertial range. Close to wavelengths 
of the order of proton kinetic scales, observed between 0.1-1 Hz in the spacecraft frame, the spectrum steepens and 
is more variable, with a spectral exponent between -2 and -4 that stabilises to around f −2.8 towards electron kinetic 
scales (Smith et al., 2006; Hamilton et al., 2008; Koval and Szabo, 2013; Bruno and Trenchi, 2014).

The fluctuating magnetic helicity, which describes the handedness of fluctuations at a particular frequency, is 
another useful parameter that can reveal information about the nature of the turbulent cascade (Matthaeus and Gold-
stein, 1982; Matthaeus et al., 1982). Throughout the inertial range, the helicity fluctuates almost randomly about zero 
(Matthaeus and Goldstein, 1982). At ion-kinetic scales a coherent signature appears, indicating the presence of circu-
larly polarised fluctuations. Recent studies have used wavelet techniques to investigate this signature further, finding 
evidence of the presence of both left-handed parallel propagating Alfvén ion-cyclotron (AIC) waves and right-handed 
oblique kinetic Alfvén waves (KAWs) (Goldstein et al., 1994; Leamon et al., 1998; Podesta and Gary, 2011; He et al., 
2011, 2012a,b; Bruno and Telloni, 2015; Telloni et al., 2015). These features are consistent with linear theory where 
the dispersion relation of Alfvén waves splits into two branches: one for AIC waves and the other for KAWs, de-
pending on plasma properties and the direction of propagating with respect to the background magnetic field (Gary, 
1986).

Observations of solar wind turbulence suggest that the power in the cascade is in wavevectors primarily perpen-
dicular to the background magnetic field, k⊥ � k‖, and that at kinetic scales the Alfvén wave cascade is replaced by 
KAWs (Horbury et al., 2008; Chen et al., 2010a,b; Wicks et al., 2010). The source of AIC waves is still under debate -
the growth of waves due to plasma instabilities often explains their presence (e.g. Jian et al., 2009; Gary, 2015; Wicks 
et al., 2016). The break in the power spectrum at ion-kinetic scales has been interpreted as the onset of dissipation of 
the fluctuations, leading to heating of solar wind ions (Leamon et al., 1998; Galtier, 2006; Schekochihin et al., 2009). 
Numerous studies have focussed on identifying the physical mechanisms behind the break scales, although actual 
evidence of dissipation leading to heating has not been observed. However, Woodham et al. (2018) recently linked 
the spectral break to the presence of fluctuations with the properties of linear Alfvén waves at these scales.

The solar wind is an excellent laboratory to provide unique insights into the fundamental kinetic processes in 
collisionless plasmas because spacecraft are small enough not to affect the local properties of the plasma at these 
scales. A deeper understanding of the ongoing kinetic processes in the solar wind will provide insights into problems 
such as coronal heating and solar wind acceleration, as well as improved knowledge of the macroscopic properties of 
the solar wind. However, the complexity of these data can make it challenging to link phenomena with theory, mainly 
because the standard magnetohydrodynamic or kinetic equations that describe the plasma dynamics cannot be solved 
analytically. Many different physical phenomena occur over different time and spatial scales, often making it difficult 
to separate various processes. Various techniques have been developed or utilised to analyse in-situ data which are 
very powerful, e.g. spectral analysis. Plasma simulations also play a vital role in aiding our understanding of space
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plasma dynamics, helping us verify analytical and empirical models of phenomena, or explain physical processes that
we observe in space, particularly non-linear processes where analytical solutions are sparse.

Hybrid simulations treat ions kinetically and electrons as a fluid, and have been used extensively to explore plasma
turbulence and heating at kinetic scales (e.g., Parashar et al., 2009, 2010, 2011; Valentini et al., 2010; Servidio
et al., 2012; Verscharen et al., 2012; Vasquez et al., 2014; Hellinger et al., 2015; Servidio et al., 2015; Vasquez,
2015; Franci et al., 2015a,b, 2016, 2017, 2018; Cerri et al., 2016, 2017a,b, 2018; Cerri and Califano, 2017). These
simulations retain all the relevant ion kinetic physics but do not include electron kinetic physics, making them less
computationally expensive than fully kinetic particle-in-cell (PIC) codes. This quality is particularly useful when
investigating turbulent phenomena that occur over a wide range of scales since a large simulation domain is needed to
generate a cascade that is comparable to in-situ data from the solar wind.

In this report, we document research using hybrid plasma simulations to complement in-situ solar wind data
analysis to probe the properties of the turbulence at ion-kinetic scales. We aim to understand the dissipation of the
turbulent fluctuations and resultant heating of the plasma. In subsequent sections, we discuss the properties of Alfvénic
turbulence, the hybrid simulations we use, analysis of simulation data, our simulation setup, and finally the results
with a discussion on our interpretations.

2. Alfvénic Turbulence

Turbulence is a dynamical phenomenon observed in fluids and plasmas where the bulk parameters of the fluid
show irregular fluctuations that appear almost stochastic but are chaotic. They non-linearly couple to create a cascade
of energy to smaller scales, making turbulence a multi-fractal process. While turbulence appears to be stochastic, it
is, in fact, deterministic - its chaotic nature makes it difficult to predict the precise properties of turbulent flow such
as the velocity and pressure; instead, we use statistics to investigate the average properties. These properties are not
sensitive to initial conditions or disturbances, and the deterministic nature of turbulence produces correlations that we
can measure (Frisch, 1995; Biskamp, 2003).

In a plasma, turbulence is more complex than its neutral fluid counterpart due to the importance of magnetic
fields in plasma dynamics that introduces anisotropy. At frequencies below the ion gyrofrequency, Ωi, the MHD
approximation holds. In incompressible MHD, two coupled equations describe a plasma (Bruno and Carbone, 2013):

∂u
∂t

+ (u · ∇) u = −
∇p
ρ

+ ν∇2u + (b · ∇) b, (1)

∂b
∂t

+ (u · ∇) b = − (b · ∇) u + η∇2b, (2)

where p is the total plasma pressure (the sum of the magnetic and thermal pressure), ρ is the plasma density, ν is the
kinematic viscosity, and η is the magnetic diffusivity. The first equation is just a modified version of the Navier-Stokes
equation including the magnetic field. The system is completed with ∇ · u = 0 and ∇ · b = 0. Equations 1-2 contain
four non-linear terms in b and u, and their cross-terms, as well two diffusion terms given by ν∇2u and η∇2b. When the
the non-linear terms dominate over the diffusion terms, dissipation cannot occur and instead non-linear interactions
dominate, leading to a turbulent cascade. To quantify this effect we use the Reynold’s number, Re, and the magnetic
Reynold’s number, Rm:

Re = UL/ν, (3)
Rm = vAL/η, (4)

whe U is the characteristic velocity scale, L is the characteristic length scale, and vA is the Alfvén speed: vA =√reB0/ 4πρ, where B0 is the mean background field. These represent a measure of the relative strength between the non-
linear terms and the dissipative terms. The higher the Reynold’s number, the more turbulent a flow. In astrophysical
plasmas such as the solar wind, often Rm > Re, leading to a dominance in magnetic field fluctuations over velocity
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fluctuations, although this is not always the case (see for example, Roberts, 2010). Neglecting dissipitive terms, the
MHD equations conserve three quantities: the total energy,

〈
u2 + b2

〉
, the cross-helicity, 〈u · b〉, and the magnetic

helicity, 〈a · b〉. Here lowercase letters represent the fluctuations in the fields (e.g., B = B0 + b), a is the fluctuating
magnetic vector potential, b = ∇ × a, and angular brackets indicate an ensemble average.

A useful notation to make Equations 1-2 more symmetrical is to use Elsässer variables: z± = u ± b (Elsasser,
1950). The equations then become ∇ · z± = 0 and

∂z±

∂t
∓ (vA · ∇) z± +

(
z∓ · ∇

)
z± = −

∇p
ρ

+ ν∇2z± + F±, (5)

where the dissipative coefficients are 2ν± = ν±η and F± represents external forcing terms. If we linearise the equation
and neglect dissipative terms,

∂z±

∂t
∓ (vA · ∇) z± ' 0, (6)

which represents Alfvén waves propagating parallel and anti-parallel to the background magnetic field, B0. Hence, the
non-linear interaction term involves counter-propagating Alfvén waves. This interaction leads to shearing and decay
of the Alfvén waves into multiple daughter waves with smaller wavelengths, which are more inclined perpendicular
to the magnetic field. Hence, as the cascade progresses to smaller scales, the turbulence becomes more anisotropic,
i.e., k⊥�k‖. More details on the phenomenology of Alfvénic turbulence can be found in Biskamp (2003) and Bruno
and Carbone (2013).

3. Hybrid Simulations

Hybrid simulations combine the use of PIC methods and fluid equations. We treat ions kinetically and the electrons
as a neutralising massless fluid, allowing us to explore ion-kinetic effects at small scales while still capturing low-
frequency electromagnetic phenomena. By treating electrons as a fluid we are unable to resolve electron kinetic
processes, i.e., ones on scales of the electron gyroradius, ρe, or frequencies comparable to the electron gyrofrequency,
Ωe. However, the advantages of doing this mean the code will run faster than a fully kinetic code, allowing larger
simulation boxes and more data. The relevant scales and frequencies of interest are the ion gyroradius, ρi, ion inertial
length, di and ion gyrofrequency, Ωi. These characteristic lengths and timescales are relatively easily measured in
space plasma by instrumentation since they are of the order of 10-100 km and seconds, respectively. With current
computational resources, we can use a large-scale three-dimensional simulation domain (∼102 di in each dimension)
with high resolution (∼10−1 di), making hybrid simulations an ideal method for exploring turbulent phenomena in
collisionless plasmas. For comparison, high-resolution 3D PIC simulations typically only have a simulation domain
of ∼101 di and so, struggle to capture large-scale effects.

Plasma phenomena require a description of the electromagnetic fields and the particles that make up the plasma,
ions and electrons. Therefore, for hybrid simulations we use Maxwell’s equations in the low frequency approximation
(the displacement current is neglected):

∇ × B =
4π
c

J (7)

∇ × E = −
1
c
∂B
∂t
, (8)

supplemented by the divergenceless condition: ∇·B = 0. We use the equation for momentum conservation to describe
the electron fluid in the limit of zero mass:

neme
dVe

dt
= −ene

(
E +

ve × B
c

)
− ∇ · Pe + ene R · J = 0, (9)

where Ve is the bulk electron velocity and the finite electron temperature is included within the electron pressure 
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tensor Pe = neTe 1, which we assume is isotropic for simplicity. The final term in Equation 9 includes the resistivity
tensor, R, and represents the collisional drag (resistive coupling) between ions and electrons. Again for simplicity, we
take a scalar resistivity: R = η 1. To close the system of equations for electrons we assume an equation of state (see
Equation 26) and assume quasi-neutrality between species: ene = qini.

To treat the ions kinetically we use the following equations for individual particles:

dxi

dt
= vi, (10)

mi
dvi

dt
= qi

(
E +

vi × B
c

)
− qiηJ, (11)

where the subscript i indicates the ion species and J = qini(Vi − Ve) is the total current density due to both ions and
electrons. The final term in the second equation balances the corresponding term in Equation 9. The quasineutrality
condition implies that ∇ · E = 0 and the divergenceless condition is maintained when Equation 8 is evolved.

3.1. Numerical Set-up

To implement these equations numerically, we need to discretise them both in space and time and normalise them
to dimensionless units. Hybrid codes are most useful for ion-kinetic effects at time scale ≥ Ω−1

i and spatial scales
≥ di = c/ωi or ρi, respectively. Several ion species, denoted by subscript s, each with its own initial density ns(x),
mass ms, charge qs, and velocity distribution Fs(v), can be included in the code. There is also a background magnetic
field, B0(x), which can have an arbitrary direction. These parameters can be used to derive the ion gyrofrequency
Ωi = q0B0/m0c, and ion plasma frequency ω2

i = 4πq2
0n0/m0, where n0 is the ion density, q0 is the charge of a proton

and m0 is the mass of a proton. The density n0 can be defined in several ways. Usually, if there is a dominant ion
species throughout the simulation box, n0 is defined as the density of this species, usually as the average over the
box. Th , the other ion species can be given different fractional values. Alternatively, n0 is defined as the total ionen∑density, s qsns, and fractions are assigned to all the different ion species. Taking the speed of light, c, as the units
of velocity we can then describe spatial scales in terms of di = c/ωi and for temporal scales, ωi

−1. In these units, the 
electromagnetic fields are normalised such that there are no constants in Maxwell’s equations.

To discretise in space we use a spatial grid with a length, L, in each dimension, often as a multiple of di, e.g. 
0 ≤ x ≤ Lx. The spatial dimensions can be varied from one to three; however, all three velocity and field components 
are retained. We will refer to a 1D grid here for simplicity. The grid is subdivided into Nx cells with equal length 
δx = Lx/Nx. The size of the domain is dependent on the physical constraints of the problem being investigated, and 
the cell size depends on the resolution required to study the problem. For turbulence, the domain needs to be large 
enough to support an inertial range power law over at least an order of magnitude, while the cell size is usually a 
fraction of di to be able to resolve the spectral break due to kinetic effects. Typically δx ≥ 0.1di, since massless 
electrons eliminates de = c/ωe scales. Simulations typically use 16-1024 particles per cell (PPC). Both Lx and δx are 
chosen so that Nx is between 102 and 103, depending on the number of spatial dimensions. Current computational 
constraints limit 2D simulations to Nx, Ny = 10240 and 3D simulations to Nx, Ny, Nz = 512.

The spatial grid is made up of N + 2 mesh points which are the centre of each of the N cells in the simulation, 
including two ’ghost’ cells at each end of the system. All of the electromagnetic fields and source terms (currents 
and densities) are discretised to these mesh points. Typically we use a staggered grid system, where E, ρ, J and p are 
known on the vertices of one grid and B is known on the vertices of the second grid. These staggered grids ensure that 
∇ × E be given correctly on both grids. Similarly, the particles and fields are discretised in time and stepped forward 
with a constant timestep, dt = ωiδt. The particle positions and fields are known at the beginning of each timestep and 
velocities at each half timestep, in a leapfrog fashion. The timestep must be small enough to resolve the problem of 
interest - most phenomena include low-frequency ω � Ωi effects, so the timestep is usually limited to Ωi δt ≤ 0.2 so 
that ion gyromotion is resolved. There is also a requirement for numerical stability that particle increments are some 
fraction of the computational cell per timestep: vmax δt ≤ δx/2, where vmax is the maximum speed of the ions.
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3.2. Ion Dynamics using Particle-in-Cell Methods

Ion dynamics in hybrid simulations are treated using PIC methods. To advance the particles forward in time, we
first advance the velocity a full timestep from vN−1/2

i to vN+1/2
i using:

vN+1/2
i = vN−1/2

i +
qiδt
mi

EN +
vN

i × BN

c

 − qiδt
mi

ηJN . (12)

where N is the timestep. The two last terms in this equation represent an effective electric field that accelerates the
ions. This equation requires the knowledge of vN

i implicitly, which we calculate using vN
i = 1/2(vN−1/2

i + vN+1/2
i ).

Methods such as the Boris push can be used. To solve Equation 12 for vN+1/2
i we first determine EN(xN

i ) and BN(xN
i ),

i.e., at the position of each particle, using linear interpolation of the contribution from the surrounding mesh points.
Higher order methods such as cubic splines are also sometimes employed. Then the particle position can be advanced
from timestep N to N + 1:

xN+1
i = xN

i + vN+1/2
i δt (13)

Finally, we determine the charge and current density due to the new particle positions at timesteps N + 1 and N + 1/2,
respectively, and then at the mesh points using linear interpolation to update the fields for the next iteration. Ghost cells
become important here because charge and current density can be shared between multiple cells. Any accumulation
inside these cells is placed back into the physical cell of the system depending on the boundary conditions for the
fields. Often, periodic boundary conditions are chosen, so that accumulation in the first ghost cell is placed into the
last physical cell and vice versa. Smoothing of the density and current is also sometimes applied to reduce noise in
the fields.

3.3. Fluid Electrons

The electrons are treated using the fluid momentum equation described above (Equation 9), using the quasi-
neutrality condition and an equation of state. The quasi-neutrality approximation means that at spatial scales larger
than the electron Debye length, λe, ne = ni. Therefore the ion density ni is used as a substitute for ne in Equation 9.
The choice of an equation of state typically has only a small effect on the overall solution. Typically we assume an
isothermal electron temperature (Te = const.) or an adiabatic model: Te = Te,0(ne/n0)γ−1 where γ = 5/3.

We also need to define the resisitivity, η to remove high-frequency effects involving electrons, which are not
modelled in hybrid simulations. We can do this by introducing an anomalous electron-ion collision frequency νan

which is related to η through: η = 4πνan/ω
2
e . In dimensionless form this is η = (νan/ωi) (Ωi/Ωe). Often we introduce

a practical resistive length Lη ≤ 0.1δx as a fraction of the cell size to eliminate unwanted high-frequency noise.

3.4. Calculating Electromagnetic Fields

Most codes calculate the fields explicitly, although implicit methods also exist. For an explicit scheme it is straight-
forward to advance B from time step N to N + 1/2 using Faraday’s law:

BN+1/2 = BN −
cδt
2

(
∇ × EN

)
. (14)

The electric field can be advanced using the electron monmentum equation (Equation 9) and solving for E:

EN+1/2 = −
VN+1/2

i × BN+1/2

c
−
∇pN+1/2

e

qin
N+1/2
i

−
BN+1/2 ×

(
∇ × BN+1/2

)
4πqin

N+1/2
i

. (15)

Here, Vi is the fluid ion velocity and nN+1/2
i is the average of the ion density between nN

i and nN+1
i : nN+1

i has just been
collected when moving the ions (Equation 13) and nN

i has been saved from the previous time step. Since pe is only a
function of the density, all the quantities in Equation 15 are known and thus EN+1/2 can be computed. We can then use
Equation 14 a second time to determine BN+1. To advance the electric field to EN+1 is not straightforward, however. If
we use Equation 15 we need to know VN+1

i . Most hybrid codes then utilise different algorithms to determine VN+1
i and

hence, EN+1. The simplest approach is a linear extrapolation of VN+1/2
i to VN+1

i which just requires keeping VN−1/2
i
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from the previous time step. See Winske et al. (2003) for a discussion of more complicated algorithms. Often more
advanced methods are used to advance the magnetic field due to the presence of short wavelength whistler noise.
To reduce this noise the timestep for advancing the magnetic field can be smaller than for the advancement of the
particle positions and velocities. These methods often employ schemes such as the 4th-order Runge-Kutta algorithm
to determine BN+θ using subcycling at timestep δt′ = δt/θ to eventually obtain BN+1.

3.5. Initialisation
To initialise the simulation we need to load the particles in both physical and velocity space and set the electro-

magnetic fields at time t = 0. To load the particles in physical space, we set the initial densities to be uniform so that
the particles are spread uniformly throughout the simulation domain. Different numbers of particles can be used to
represent different ion species. To load the particles in velocity space we assume an initial velocity distribution, Fs(v),
often a Maxwellian, and determine the particle velocities randomly using a loading function Rs(v) that varies between
0 and 1. Electric and magnetic field fluctuations are usually assumed to be zero.

4. Analysing Simulation Data

Simulations are performed using a spatial grid and so do not use Taylor’s hypothesis that is often used in analysing
in-situ data from the solar wind (Taylor, 1938), meaning we can study the full 3D structure of the turbulence. From
solar wind results reported in the literature, we often study the fluctuations with wavevectors parallel and perpendicular
to the local mean magnetic field, k‖ and k⊥, respectively. But here, we perform integrations over the simulation domain
to study the flucutuations in full k⊥ − k‖ space, following Franci et al. (2018). We assume the power spectrum of
magnetic field fluctuations is axis-symmetric. That is, they follow cylindrical symmetry with respect to the background

magnetic field. In cylindrical coordinates: k⊥ =
√

k2
x + k2

y , k‖ = kz, and φ = arctan (ky/kx) and varies between 0 and
2π. In mathematical notation, the 3D power spectrum of the magnetic field, B, is defined as:

P3D(k⊥, k‖) =
1
k⊥

∑
k⊥=
√

k2
x+k2

y

|δB(k)|2, (16)

where |δB|2 =
∑

i= j B̂iB̂∗j , i, j = x, y, z and the hat denotes Fourier transform. This equation represents the energy of
the Fourier modes averaged over concentric rings normal to k‖ defined by k⊥ to k⊥ + dk⊥, i.e., the sum of the power
in the modes contained within each ring divided by the number of modes. Here, dk⊥ = 2π/Lbox. The factor 1/k⊥
accounts for the area of the rings scalling with dA = 2πk⊥dk⊥. To obtain the 2D spectrum, we need to integrate the
3D spectrum over all angles φ:

P2D(k⊥, k‖) =

ˆ 2π

0
P3D(k⊥, k‖) k⊥dφ = 2π k⊥P3D(k⊥, k‖). (17)

The extra factor of k⊥ inside the integral arises from the unit element of k: dk = dk⊥k̂⊥ + k⊥dφ φ̂ + dk‖ k̂‖. To obtain
the one-dimensional parallel and perpendicular spectra we further integrate the 2D spectrum:

P1D,⊥(k⊥) =

ˆ ∞
0

P2D(k⊥, k‖)dk‖ =
∑

k‖

P2D ∆k‖, (18)

P1D,‖(k‖) =

ˆ ∞
0

P2D(k⊥, k‖)dk⊥ =
∑
k⊥

P2D ∆k⊥, (19)

Since P2D and P1D are spectral densities, i.e., S (k) = P(k)dk, when plotting in logarithmic space we need to
account for extra factors of k: d(log10 k) = dk/(k log10 10) (see He et al., 2012b). Therefore,

Plog
2D d(log10 k⊥)d(log10 k‖) = Plin

2D k⊥(log10 10) d(log10 k⊥) k‖(log10 10) d(log10 k‖), (20)

Plog
1D d(log10 k) = Plin

1D k (log10 10) d(log10 k), (21)
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To compare the analysis of in-situ data from the solar wind by Woodham et al. (2018), we compute power spectra
of the magnetic field using the methods outlined above. To investigate the properties of the break in the power
spectrum and magnetic helicity, we focus on the 1D perpendicular spectrum. To determine the break in the spectrum,
kb, we fit the following equation to the spectrum using a sliding window of 10 points in k, shifted by one point each
time:

log10 (P1D) = α log10 (k) + c. (22)

Here, we fit straight lines in logarithmic space where α is the spectral exponent and c is the intercept. Using the
series of fits, we identify the fits starting at small k up to the last fit where α = −5/3 within 10%, as well as the fits
within 10% of the minimum exponent at large k. We then determine a value for α and c for the inertial range (1) and
ion-kinetic range (2) by fitting a second time two power laws to the two ranges of the spectrum, respectively. The
break in the spectrum is then the point at which the two lines intersect:

log10 (kb) =
c2 − c1

α1 − α2
. (23)

To determine the magnetic helicity from simulation data we follow Howes and Quataert (2010). The helicity is
defined as: Hm(k) = δA(k) ·δB∗(k), where A = ∇×B is the magnetic vector potential and δA = i(k×δB)/k2 assuming
the Coulomb gauge: ∇ · A = 0. The helicity is then:

Hm(k) = i
δByδB∗z − δB∗yδBz

kx
≡ i

δBzδB∗x − δB∗zδBx

ky
≡ i

δBxδB∗y − δB∗xδBy

kz
. (24)

The normalised magnetic helicity is then defined as σm(k) = kHm(k)/ |δB(k)|2 and takes a value between -1 and +1
for a right and left-handed circularly polarised wave, respectively. A value |σm| < 1 indicates a coherent handedness
of the flucutations, whereas σm = 0 indicates no coherent polarisation (Gary, 1986). To calculate 2D and 1D helicity
spectra in a similar fashion to the power spectrum, we use:

σm(k) =
k 〈Hm(k)〉〈
|δB(k)|2

〉 , (25)

where the angular brackets represent the integration process discussed above, for example, σ2D = kH2D/P2D where

k =
√

k2
⊥ + k2

‖
. Since helicity is not a spectral density, we do not need to include any extra factors of k when plotting

spectra.

5. Simulation Set-up

We present here the results of our analysis of three-dimensional high-resolution hybrid simulations using kinetic
ions and a massless electron fluid. We use the H3D hybrid code (Karimabadi et al., 2006; Podesta and Roytershteyn,
2017; Fu et al., 2018), which is optimised for turbulence simulatons. This code advances the particles using the Boris
push algorithm, the magnetic field using subcycling with a 4th-order Runge-Kutta scheme, and the electric field using
a linear extrapolation of Vi. The simulation is set-up with a Nx = Ny = Nz/3 = 512 cubic grid with dimensions
Lx = Ly = Lz/3 = 128di, making the box elongated along the z-direction. The corresponding spacing between grid
points is δx = δy = δz = 0.25di. There is an initial uniform background magnetic field orientated along the z-direction,
B0 = B0ẑ. We use 512 marker particles per cell (PPC) to represent protons. We use a timestep of δt Ωi = 0.01 and to
conserve total energy in the system we use a small resistivity of η = 10−74π/ωpi. We set the initial ion temperature so
that βi = 8πn0Ti/B2

0 = 1, which is typical for fast solar wind conditions at 1 AU. The box is given periodic boundary
conditions for fields and particles, and initially, we set Te/Ti = 1/2. The electrons follow the adiabatic equation of
state with γ = 5/3:

Te/n
γ−1
e = const (26)

The elongation of the simulation box allows the development of an anisotropic (k⊥ � k‖) MHD turbulent cascade
(Perez and Boldyrev, 2010). To initiate this forward cascade of energy we inject pairs of critically balanced 
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Figure 1: (a) Snapshots of the fluctuating magnetic field, |B|2, at the box faces for (a) t Ωi = 0 and (b) t Ωi = 384, the Alfvén time, tA.

(Goldreich and Sridhar, 1995) counter-propagating long wavelength Alfvén waves into the box at time t = 0 . The 
fluctuating magnetic field of these waves is (Podesta and Roytershteyn, 2017):

∆B = B − B0 =
∑

m

∆Bm cos (km · x + φm), (27)

Here, the sum consists of 32 terms with random phases, φm. The wavevectors are given by:

km =

(
±

2πm1

Lx
,±

2πm2

Ly
,

2πm3

Lz

)
, (28)

where the indices m1, m2, m3 = 1, 2. The amplitude of the waves, given by ∆Bm, are chosen so that km ·∆Bm = 0 and
B0 ·∆Bm = 0 to ensure Alfvénic perturbations. The magnitude of the waves, |∆Bm|, are the same for every wavevector
and normalised so that

〈
∆B2

〉
/B2

0 = L2
x/L

2
z , where

〈
∆B2

〉
is a volume average over the whole simulation domain.

The perturbation in the bulk velocity field is then zero since the fluctuations due to counter-propagating Alfvén waves 
will completely cancel. These waves interact non-linearly and shear, producing daughter waves that will initiate the 
forward cascade. These waves are injected at a driving scale that is much larger than kinetic scales (kdi ∼ 1) and
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Figure 2: (a) Two-dimensional power spectrum of magnetic field fluctuations in the simulation box t Ωi = 0, given by P2D(k‖, k⊥). (b) The
corresponding two-dimensional magnetic helicity spectrum, σm,2D(k‖, k⊥).

so will allow an inertial range to develop over at least an order of magnitude in k before a break in the spectrum is
observed, the focus of this work.

6. Results

In Figure 1 we show snapshots of the fluctuating magnetic field, |B|2, at the box faces for times t Ωi = 0 and
t Ωi = 384. We choose the latter time because t = τA where τA = Lz/vA is the Alfvén crossing time so that the initial 
injected waves have travelled across the simulation box at least once. We can see in panel (a) the large-scale Alfvén 
waves injected into the box and in panel (b) these waves have interacted with other waves, leading to a forward cascade 
that produces smaller and smaller eddies, vortices and filament-like structures. We explore these features in spectral 
space in Figures 2 and 3, showing the two-dimensional power spectrum of magnetic field fluctuations, P2D(k‖, k⊥), 
and the corresponding two-dimensional magnetic helicity spectrum, σm,2D(k‖, k⊥). From Figure 2 (t Ωi = 0), we see 
in panel (a) the injected power of the large-scale Alfvén waves at small wavenumbers, k⊥di ∼ 0.1 and k‖di ∼ 0.02, and 
very little power at higher wavenumbers. Likewise, in the helicity spectrum in panel (b) we see no coherent signature 
in wavenumber space, and in the parallel direction the helicity oscillates about zero.

In Figure 3 we show the same spectral plots for t Ωi = 384. Here, we can see that the power in the magnetic 
field fluctuations initially injected at small wavenumbers has cascaded towards higher wavenumbers, primarily in the 
perpendicular direction, as expected for anisotropic Alfvénic turbulence which we also see in the solar wind. In the 
helicity spectrum, we see a coherent signature across both perpendicular and parallel wavenumbers. This signature 
is positive indicating that the fluctuations are left-hand polarised, and could be AIC waves. The signature extends 
towards smaller wavenumbers kdi ∼ 0.1, but is strongest at k⊥di ∼ 1 and k‖di = 0.6. It is also interesting that this 
signature is co-located with the steepest gradient in panel (a), towards higher parallel wavenumbers, where the power 
drops significantly with increasing k‖. This signature may be a sign of dissipation of the fluctuations at these scales, 
although more investigation is needed.

While we use t Ωi = 384 to study the turbulence, the time of maximum dissipation (Podesta and Roytershteyn, 
2017) is t Ωi ' 230. We also plot two-dimensional spectra for this time in Figure 4. in panel (a) we see that the 
power spectrum is almost identical to that at t Ωi = 384. However, the signature in the helicity spectrum is dominantly 
negative, suggesting the presence of right-handed fluctuations at proton kinetic scales that may be indicative of KAWs. 
This result suggests that the helicity signature is highly localised in both k-space and time, and is constantly evolving 
as the turbulence evolves. Solar wind data are consistent with this observation and suggest this signature is related in 
some way to the damping of fluctuations at these scales and subsequent proton heating. Since signatures of dissipation 
have been found to be bursty, this is also consistent with the continuously evolving helicity signature we observe (e.g., 
Mangeney, 2012).
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Figure 3: (a) Two-dimensional power spectrum of magnetic field fluctuations in the simulation box t Ωi = 384, given by P2D(k‖, k⊥). (b) The
corresponding two-dimensional magnetic helicity spectrum, σm,2D(k‖, k⊥).

Figure 4: (a) Two-dimensional power spectrum of magnetic field fluctuations in the simulation box t Ωi ' 230, given by P2D(k‖, k⊥). (b) The
corresponding two-dimensional magnetic helicity spectrum, σm,2D(k‖, k⊥).

Finally, in Figure 5 we show the one-dimensional perpendicular and parallel power spectra, P1D,⊥(k⊥) and P1D,‖(k‖),
for t Ωi = 384. We find that in the inertial range the perpendicular spectrum is close to k−5/3

⊥ and the parallel spectrum
close to k−2

‖
, as expected from critical balance. Close to k⊥di ∼ 1, the spectrum steepens as expected from solar wind

measurements. The location of the break in the perpendicular spectrum when compared with Figure 3 (b) is within 
the centre of the coherent peak in helicity, which also suggests that the presence of coherent circularly polarised fluc-
tuations at these scales is linked to dissipation or a steepening in the power spectrum. We intend to investigate this 
result in future work further. At the highest wavenumbers, the spectra both flatten and increase, which is likely due to 
numerical and high-frequency whistler noise and is not physical.

We do not plot one-dimensional helicity spectra here since the integration to reduce the 2D spectrum does not 
capture the localised coherent helicity signature well and so we are unable to quantify the helicity signature this way. 
However, if we take a cut of the helicity spectra at k‖di = 1, we can produce helicity spectral that are representative 
of solar wind measurements. We show two of these cuts for t Ωi ' 230 and t Ωi = 384 in Figure 6. We can see that 
for both cuts the helicity oscillates about zero at small k⊥, and at k⊥di ∼ 1 a coherent signature appears, with opposite 
sign and similar magnitude of about 0.2. Then at a higher k⊥, the helicity returns to zero. These helicity spectra are 
very similar to those observed in the fast solar wind by Woodham et al. (2018). The next step in this analysis is to

71



10
-2

10
-1

10
0

10
1

10
-2

10
-1

10
0

10
1

10
2
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as expected from critical balance.
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Figure 6: Cuts of the two-dimensional magnetic helicity spectrum σm,2D(k‖, k⊥) at k‖di = 1 for t Ωi = 384 and t Ωi ' 230.

determine how the 2D helicity spectrum appears if it were measured by a single spacecraft.

7. Conclusions

In this report, we present initial results from our analysis of plasma turbulence using a three-dimensional high-
resolution hybrid simulation. We use our experience of analysing in-situ solar wind data in order to develop the 
necessary tools to analyse simulation data and explore the physical processes at proton kinetic scales. Initial results 
are promising and suggest that the coherent helicity signature seen at proton kinetic scales is associated with the break 
in the power spectrum, as suggested by in-situ data analysis (Woodham et al., 2018), and linked to the dissipation of the 
turbulent fluctuations. This research is currently ongoing, and we plan further work to compare our simulation results 
with in-situ data. For example, spectra from single spacecraft are similar to integrating the simulation spectrum along 
the direction perpendicular to the direction of plasma flow past the spacecraft. Therefore, we plan to try integrating 
along k(θ) where θ is the angle from the z-direction to explore how the simulation results appear if they were measured 
by a single spacecraft. Initial investigation of these ideas from Figure 6 is promising. We also aim to identify any
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dissipation mechanisms associated with the coherent helicity signature, as well as explore how changing plasma beta,
βi, affects the results presented here.

Large-scale simulations such as those presented here are challenging to set up and require extensive computational
resources. Simulations retain full three-dimensional information of the turbulent fluctuations, whereas solar wind
measurements lose some of this information during the integration to a one-dimensional spectrum due to Taylor’s
hypothesis. Also, by tracing sample particles and analysing their energisation processes, we may gain further insights
into the wave-particle interactions during the dissipation. Therefore, by understanding simulation results that are
comparable to solar wind measurements, we can better understand turbulent phenomena in collisionless plasmas and
apply our knowledge to other astrophysical plasmas.

8. Acknowledgments

L.W. would like to thank J. Podesta and V. Roytershteyn for supplying the data from their simulation run, the
Center for Space and Earth Sciences at Los Alamos National Laboratory for hosting the Space Weather Summer
School, and J. Woodroffe for his support during the school.

References

Alexandrova, O., Chen, C.H.K., Sorriso-Valvo, L., Horbury, T.S., Bale, S.D., 2013. Solar wind turbulence and the role of ion instabilities. Space
Science Reviews 178, 101–139. 1306.5336.

Biskamp, D., 2003. Magnetohydrodynamic Turbulence. Cambridge University Press.
Bruno, R., Carbone, V., 2013. The solar wind as a turbulence laboratory. Living Reviews in Solar Physics 10.
Bruno, R., Telloni, D., 2015. Spectral Analysis of Magnetic Fluctuations at Proton Scales from Fast to Slow Solar Wind. The Astrophysical Journal

Letters 811, L17. 1509.04866.
Bruno, R., Trenchi, L., 2014. Radial Dependence of the Frequency Break Between Fluid and Kinetic Scales in the Solar Wind Fluctuations. The

Astrophysical Journal Letters 787, L24.
Cerri, S.S., Califano, F., 2017. Reconnection and small-scale fields in 2D-3V hybrid-kinetic driven turbulence simulations. New Journal of Physics

19, 0–15.
Cerri, S.S., Califano, F., Jenko, F., Told, D., Rincon, F., 2016. Subproton-Scale Cascades in Solar Wind Turbulence: Driven Hybrid-Kinetic

Simulations. The Astrophysical Journal Letters 822, L12. 1604.07674.
Cerri, S.S., Franci, L., Califano, F., Landi, S., Hellinger, P., 2017a. Plasma turbulence at ion scales: a comparison between PIC and Eulerian

hybrid-kinetic approaches. Journal of Plasma Physics 83, 1–19. 1703.02443.
Cerri, S.S., Kunz, M.W., Califano, F., 2018. Dual phase-space cascades in 3D hybrid-Vlasov-Maxwell turbulence. 1802.06133.
Cerri, S.S., Servidio, S., Califano, F., 2017b. Kinetic cascade in solar-wind turbulence: 3D3V hybrid-kinetic simulations with electron inertia. The

Astrophysical Journal Letters 846, L18. 1707.08429.
Chen, C.H.K., 2016. Recent progress in astrophysical plasma turbulence from solar wind observations. Journal of Plasma Physics 82, 1–28.

1611.03386.
Chen, C.H.K., Horbury, T.S., Schekochihin, A.A., Wicks, R.T., Alexandrova, O., Mitchell, J., 2010a. Anisotropy of Solar Wind Turbulence between

Ion and Electron Scales. Physical Review Letters 104, 255002. 1002.2539.
Chen, C.H.K., Wicks, R.T., Horbury, T.S., Schekochihin, A.A., 2010b. Interpreting Power Anisotropy Measurements in Plasma Turbulence. The

Astrophysical Journal 711, L79–L83.
Cranmer, S.R., Matthaeus, W.H., Breech, B.A., Kasper, J.C., 2009. Empirical Constraints on Proton and Electron Heating in the Fast Solar Wind.

The Astrophysical Journal 702, 1604–1614. 0907.2650.
Elsasser, W.M., 1950. The Hydromagnetic Equations. Physical Review 79, 183.
Franci, L., Cerri, S.S., Califano, F., Landi, S., Papini, E., Verdini, A., Matteini, L., Jenko, F., Hellinger, P., 2017. Magnetic reconnection as a driver

for a sub-ion scale cascade in plasma turbulence. The Astrophysical Journal Letters 850, L16. 1707.06548.
Franci, L., Landi, S., Matteini, L., Verdini, A., Hellinger, P., 2015a. High-resolution hybrid simulations of kinetic plasma turbulence at proton

scales. Astrophysical Journal 812, 21. 1506.05999.
Franci, L., Landi, S., Matteini, L., Verdini, A., Hellinger, P., 2016. Plasma Beta Dependence of the Ion-Scale Spectral Break of Solar Wind

Turbulence: High-Resolution 2D Hybrid Simulations. The Astrophysical Journal 833, 91. 1610.05158.
Franci, L., Landi, S., Verdini, A., Matteini, L., Hellinger, P., 2018. Solar Wind Turbulent Cascade from MHD to Sub-ion Scales: Large-size 3D

Hybrid Particle-in-cell Simulations. The Astrophysical Journal 853, 26.
Franci, L., Verdini, A., Matteini, L., Landi, S., Hellinger, P., 2015b. Solar Wind Turbulence from MHD to Sub-ion Scales: High-resolution Hybrid

Simulations. Astrophysical Journal Letters 804, 1–5. 1503.05457.
Frisch, U., 1995. Turbulence: The Legacy of A.N. Kolmogorov. Cambridge University Press.
Fu, X., Li, H., Guo, F., Li, X., Roytershteyn, V., 2018. Parametric Decay Instability and Dissipation of Low-frequency Alfv\’en Waves in Low-beta

Turbulent Plasmas. The Astrophysical Journal 855, 139. 1710.04149.
Galtier, S., 2006. Wave turbulence in incompressible Hall magnetohydrodynamics. Journal of Plasma Physics 72, 721–769. 0608227.
Gary, S.P., 1986. Low-frequency waves in a high-beta collisionless plasma: polarization, compressibility and helicity. Journal of Plasma Physics

35, 431–447.

73



Gary, S.P., 2015. Short-wavelength plasma turbulence and temperature anisotropy instabilities: recent computational progress. Philosophical
Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 373, 20140149–20140149.

Goldreich, P., Sridhar, S., 1995. Toward a theory of interstellar turbulence II: Stong Alfvenic turbulence. The Astrophysical Journal 438, 763. 
Goldstein, M.L., Roberts, D.A., Fitch, C.A., 1994. Properties of the fluctuating magnetic helicity in the inertial and dissipation ranges of solar wind

turbulence. Journal of Geophysical Research 99, 11,519–11,538.
Goldstein, M.L., Roberts, D.A., Matthaeus, W.H., 1995. Magnetohydrodynamic turbulence in the solar wind. Annual Review of Astronomy and

Astrophysics 33, 283–325.
Habbal, S.R., Woo, R., Fineschi, S., O’Neal, R., Kohl, J., Noci, G., Korendyke, C., 1997. Origins of the Slow and the Ubiquitous Fast Solar Wind.

The Astrophysical Journal 489, L103–L106. 9709021.
Hamilton, K., Smith, C.W., Vasquez, B.J., Leamon, R.J., 2008. Anisotropies and helicities in the solar wind inertial and dissipation ranges at 1 AU.

Journal of Geophysical Research: Space Physics 113, A01106.
He, J., Marsch, E., Tu, C.Y., Yao, S., Tian, H., 2011. Possible Evidence of Alfvén-Cyclotron Waves in the Angle Distribution of Magnetic Helicity

of Solar Wind Turbulence. The Astrophysical Journal 731, 85.
He, J., Tu, C.Y., Marsch, E., Yao, S., 2012a. Do Oblique Alfven/Ion-Cyclotron or Fast-Mode/Whistler Waves Dominate the Dissipation of Solar

Wind Turbulence Near the Proton Inertial Length? The Astrophysical Journal Letters 8.
He, J., Tu, C.Y., Marsch, E., Yao, S., 2012b. Reproduction of the Observed Two-Component Magnetic Helicity in Solar Wind Turbulence By a

Superposition of Parallel and Oblique Alfvén Waves. The Astrophysical Journal 749, 86.
Hellinger, P., Matteini, L., Landi, S., Verdini, A., Franci, L., Trávnı́ček, P.M., 2015. PLASMA TURBULENCE AND KINETIC INSTABILITIES
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